Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
2 results
Search Results
Item High net worth ownership regimes in critical conservation areas: implications for resource governance(Montana State University - Bozeman, College of Letters & Science, 2020) Epstein, Kathleen Elizabeth; Chairperson, Graduate Committee: Julia Hobson Haggerty; Julia H. Haggerty and Hannah Gosnell were co-authors of the article, 'Super-rich landowners in social-ecological systems: opportunities in affective political ecology and life course perspectives' in the journal 'Geoforum' which is contained within this dissertation.; Julia Hobson Haggerty and Hannah Gosnell were co-authors of the article, 'With, not for, money: ranch management trajectories of the super-rich in greater Yellowstone' submitted to the journal 'Annals of the American Association of Geographers' which is contained within this dissertation.; Dissertation contains a article of which Kathleen Elizabeth Epstein is not the main author.Despite the expanding financial power of the global super-rich and their expansive control over natural resources as proprietors of an increasing number of large agricultural properties, geographers have only just begun to assess the influences of wealthy landowners on systems of environmental management. In this dissertation, I examine a set of ownership dynamics related to the acquisition of ranchland properties by high net worth (HNW) individuals in the Greater Yellowstone Ecosystem, a charismatic conservation area in the Northern Rockies, USA. The dissertation deploys a mixed methods approach informed by social-ecological systems theory and insights from the literature on political ecology of the American West to assess HNW ownership regimes at the landscape and property scales from the perspective of an iconic regional resource institution: state-led elk management. The work follows a central conceptual logic related to the evolution of HNW land management, namely that ranch owners and properties interact with local ecologies, social actors, and resource institutions in ways that influence land use strategies and practices over time and space. At the landscape scale, patterns of land-use intensification (e.g., increased use of irrigation) have converged with growing diversification (e.g., increased residential development), to make elk management more complex, as elk encounter a range of push and pull factors across a shifting and diverse landscape of land-use values and practices. A defining characteristic of the trajectory for ranches of the super-rich is that HNW landowners ranch with, as opposed to for, money, though multiple social-ecological factors (markets, property lines, legal institutions, and unpredictable rangeland socio-ecologies) also shape HNW landowners' abilities to realize management goals and visions. Where HNW ownership regimes intersect with shifts in the political and moral economy, conflicts related to public access to wildlife on private lands have emerged. In this context, the work of wildlife managers requires adaptive strategies as wildlife management has become more about managing people - and the psychosocial outcomes of conflict - than managing wildlife. Ultimately, this research argues that the challenges HNW ownership regimes pose for resource governance require strategic engagement with the broader structures of wealth concentration and resource control that have enabled them.Item Postglacial vegetation and fire history of the southern Mission Valley, Montana(Montana State University - Bozeman, College of Letters & Science, 2017) Alt, Mio Hazel; Chairperson, Graduate Committee: Cathy WhitlockEcosystems shaped by mixed - severity fire regimes cover a large area of the Northern Rocky Mountains, yet relatively little is known about the historical variability and drivers of these ecosystems. The low - and mid - elevations of the Mission Range, Montana, are dominated by mixed conifer forests, and the area has been occupied by humans for at least 10,000 years, making it an ideal location for investigating how climate and humans may have affected vegetation and fire regimes during the late - glacial period through the Holocene. Pollen and charcoal records from lake sediment cores from a small closed - basin lake (Twin Lake) were used to reconstruct the vegetation and fire history of the southern Mission Valley, Montana, and compared to other sites in the region. During the late - glacial period, data show an abundance of Pinus (P. albicaulis or monticola) Artemisia, and Poaceae pollen prior to 13,000 cal yr BP, suggesting the site was dominated by an open landscape with shrubs and grass, cold relatively dry conditions, and minimal fire activity. Increased percentages of Pinus (P. Ponderosa or contorta), Picea, and Abies pollen at 13,000 cal yr BP mark the onset of a closed conifer forest, relatively cool and wet conditions and an increase in fire activity accompanying an increase in biomass. Large increases in Pseudotsuga/Larix and Artemisia pollen between 10,000 - 6000 cal yr BP suggest warmer and drier climatic conditions developed during this interval, consistent with other records from the northwestern U.S. Charcoal influx show this interval of warm and dry conditions led to low severity fires followed by high severity fires as forests of P. contorta or P. ponderosa became more dense between 7000 and 5000 cal yr BP. The mixed - conifer forests that dominate the site today began to develop ca. 6000 cal yr BP when fire frequency and severity became highly variable. Surprisingly, fire activity from ca. 5000 cal yr BP to present remained relatively high despite a cooling and wetting trend in the region. This departure of fire activity from climatic controls suggests other local factors influenced fire activity, and may suggest a greater role of human influence during the late Holocene.