Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
3 results
Search Results
Item Toward polarization-enhanced water quality remote sensing measurements from UAVs(SPIE, 2024-05) Morgan, P. Flint; Weller, Wyatt W.; Maxwell, Dylan J.; Hamp, Shannon M.; Venkatesulu, Erica; Shaw, Joseph A.; Whitaker, Bradley M.; Roddewig, Michael R.Montana and similar regions contain numerous rivers and lakes that are too small to be spatially resolved by satellites that provide water quality estimates. Unoccupied Aerial Vehicles (UAVs) can be used to obtain such data with much higher spatial and temporal resolution. Water properties are traditionally retrieved from passively measured spectral radiance, but polarization has been shown to improve retrievals of the attenuation-to-absorption ratio to enable calculation of the scattering coefficient for in-water particulate matter. This feeds into improved retrievals of other parameters such as the bulk refractive index and particle size distribution. This presentation will describe experiments conducted to develop a data set for water remote sensing using combined UAV-based hyperspectral and polarization cameras supplemented with in-situ sampling at Flathead Lake in northwestern Montana and the results of preliminary data analysis. A symbolic regression model was used to derive two equations: one relating DoLP, AoP, and the linear Stokes parameters at wavelengths of 440 nm, 550 nm and 660 nm, to chlorophyll-a content, and one relating the same data to the attenuation-to-absorption ratio for 440 nm, 550 nm and 660 nm. Symbolic regression is a machine learning algorithm where the inputs are vectors and the output is an analytic expression, typically chosen by a genetic algorithm. An advantage of this approach is that the explainability of a simple equation can be combined with the accuracy of less explainable models, such as the genetic algorithm.Item Benthic river algae mapping using hyperspectral imagery from unoccupied aerial vehicles(SPIE-Intl Soc Optical Eng, 2024-06) Logan, Riley D.; Shaw, Joseph A.The increasing prevalence of nuisance benthic algal blooms in freshwater systems has led to water quality monitoring programs based on the presence and abundance of algae. Large blooms of the nuisance filamentous algae, Cladophora glomerata, have become common in the waters of the Upper Clark Fork River in western Montana. To aid in the understanding of algal growth dynamics, unoccupied aerial vehicle (UAV)-based hyperspectral images were gathered at three field sites along the length of the river throughout the growing season of 2021. Select regions within images covering the spectral range of 400 to 850 nm were labeled based on a combination of professional judgment and spectral profiles and used to train a random forest classifier to identify benthic algal growth across several classes, including benthic growth dominated by Cladophora (Clado), benthic growth dominated by growth forms other than Cladophora (non-Clado), and areas below a visually detectable threshold of benthic growth (bare substrate). After classification, images were stitched together to produce spatial distribution maps of each river reach while also calculating the average percent cover for each reach, achieving an accuracy of approximately 99% relative to manually labeled images. Results of this analysis showed strong variability across each reach, both temporally (up to 40%) and spatially (up to 46%), indicating that UAV-based imaging with high-spatial resolution could augment and therefore improve traditional measurement techniques that are spatially limited, such as spot sampling.Item Radiometry and the Friis transmission equation(American Association of Physics Teachers, 2013) Shaw, JosephTo more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction. This approach places more emphasis on the physics and conceptual understanding of the Friis equation than is provided by the traditional derivation based on antenna impedance. Specifically, it shows that the wavelength-squared dependence can be attributed to diffraction at the antenna aperture and illustrates the important difference between the throughput (product of area and solid angle) of a single antenna or telescope and the throughput of a transmitter-receiver pair.