Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
2 results
Search Results
Item Enabling rapid prototyping of audio signal processing systems using system-on-chip field programmable gate arrays(Montana State University - Bozeman, College of Engineering, 2020) Vannoy, Trevor Charles; Chairperson, Graduate Committee: Ross K. SniderSystem-on-Chip Field Programmable Gate Arrays are excellent devices for high performance, low latency signal processing. Unfortunately, they are notoriously difficult to use, requiring significant hardware and software engineering expertise. To address these challenges, a development framework is created that utilizes graphical programming and automatic code generation; this framework reduces development time and reduces the need to be an expert in Field Programmable Gate Arrays. A sound effects processor and a real-time audio beamformer were created to showcase the development framework and serve as reference designs for other developers. The development framework, coupled with open source audio hardware, enables both experts and non-experts to rapidly prototype audio signal processing systems using System-on-Chip Field Programmable Gate Arrays.Item Sequential beamspace smart antenna system(Montana State University - Bozeman, College of Engineering, 2011) Tidd, William Graves; Chairperson, Graduate Committee: Richard WolffThis thesis proposes a design of a novel and innovative sequential beamspace (SBS) smart antenna system. The system is capable of accurate direction of arrival (DOA) estimation in beamspace and efficient beamforming. Moreover, the robust functionality of such a system includes high resolution radio frequency (RF) emitter DOA estimation and beamforming in a noisy environment in the presence of strong interference. Simulations for DOA estimation using beamspace MUSIC and beamspace Capon methods are presented in conjunction with Capon beamforming. These methods are compared and contrasted with proven element space DOA estimation techniques to demonstrate the validity and advantages of pursuing a SBS smart antenna for real-world applications. The beamspace DOA estimation accuracy, resolution, beamforming pattern, and output signal quality have been thoroughly studied and quantified. The algorithms have been tailored to utilize an 8 element uniform circular array (UCA) and an 8 channel analog beamformer (BF) operating at 5.8 GHz to gather lab-based experimental results. The simulations and experimental results show that the proposed system can achieve good performance once it is properly synchronized using a time delay correction filter. In addition, a significant decrease in hardware is realized when operating in beamspace versus element space.