Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
19 results
Search Results
Item Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds(Springer Science and Business Media LLC, 2012-11) Erin K. Field; Robin Gerlach; Sridhar Viamajala; Laura K. Jennings; Brent M. PeytonThe reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the Department of Energy site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in Cr(VI) remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction rates as these chemical species are likely to be present in, or added to, the environment during in situ bioremediation. Results indicated that the type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. Molasses stimulated Cr(VI) reduction more effectively than pure sucrose, presumably due to presence of more easily utilizable sugars, electron shuttling compounds or compounds with direct Cr(VI) reduction capabilities. Cr(VI) reduction rates increased with increasing concentration of anthraquinone-2,6-disulfonate (AQDS) regardless of the carbon source. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II), which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems was the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that was Cr(VI), Fe(III), or AQDS.Item Assessing a novel approach to pharmaceutical removal from wastewater: aerobic granular sludge(Montana State University - Bozeman, College of Engineering, 2024) Bodle, Kylie Brigitta; Chairperson, Graduate Committee: Catherine Kirkland; This is a manuscript style paper that includes co-authored chapters.Pharmaceutical concentrations in various environmental matrices are increasing across the globe. Effluent discharge from wastewater treatment plants is a major vector by which pharmaceuticals enter the environment, as many of these compounds are not biodegradable under conventional wastewater treatment conditions. Although concentrations are currently low (ng/L to ?g/L levels), pharmaceutical contamination poses risks to both human and animal health, as many pharmaceuticals can have toxic effects on fish, birds, and small mammals, as well as contribute to the proliferation of antibiotic resistance genes in bacteria. Aerobic granular sludge (AGS), an emerging biofilm-based wastewater treatment biotechnology and the subject of this dissertation, may be capable of enhancing pharmaceutical removal from wastewater. Scientific literature indicates that AGS uses a mixture of both biodegradation and adsorption to remove pharmaceuticals, but thus far, studies on this topic are limited. The research detailed herein investigated how AGS was affected by a mixture of three common, but relatively unstudied, pharmaceuticals: diclofenac (anti-inflammatory), erythromycin (antibiotic), and gemfibrozil (lipid regulator). Studies described herein examined how AGS grown in two different environments--the lab versus a full-scale wastewater treatment plant--responded to pharmaceuticals. Pharmaceutical effects on wastewater treatment efficacy, active microbial populations, and biofilm structures were investigated. Pharmaceutical fates in both the aqueous and solid phases were also tracked. In general, lab-grown AGS was more negatively impacted by pharmaceutical exposure, evidenced by reduced wastewater treatment efficacy, declines in key wastewater-treating microbial populations, and reductions in biofilm lipid content. Pharmaceuticals were also poorly removed by lab-grown granules. In contrast, key microbial populations and biofilm structures remained stable throughout dosing in environmentally-grown AGS, and gemfibrozil was completely biodegraded. An important caveat to comparison of the two studies, however, is that the pharmaceutical dose to lab-grown AGS was approximately double that to environmental granules. Altogether, the research described herein demonstrates the promise of AGS as a dual wastewater and pharmaceutical treatment technology, but illustrates the importance of conducting experiments under conditions as environmentally relevant as possible.Item Microbially induced calcium carbonate precipitation: meso-scale optimization and micro-scale characterization(Montana State University - Bozeman, College of Engineering, 2020) Zambare, Neerja Milind; Chairperson, Graduate Committee: Robin Gerlach and Ellen G. Lauchnor (co-chair); Ellen Lauchnor and Robin Gerlach were co-authors of the article, 'Controlling the distribution of microbially precipitated calcium carbonate in radial flow environments' in the journal 'Environmental science and technology' which is contained within this dissertation.; Robin Gerlach and Ellen Lauchnor were co-authors of the article, 'Spatio-temporal dynamics of strontium partitioning with microbially induced calcium carbonate precipitation in porous media flow cells' submitted to the journal 'Environmental science & technology' which is contained within this dissertation.; Robin Gerlach and Ellen Lauchnor were co-authors of the article, 'Co-precipitation of strontium and barium' submitted to the journal 'Environmental science & technology' which is contained within this dissertation.; Nada Naser, Robin Gerlach and Connie Chang were co-authors of the article, 'Visualizing microbially induced mineral precipitation from single cells using drop-based microfluidics' submitted to the journal 'Nature methods' which is contained within this dissertation.Microorganisms have the potential to impact processes on a scale orders of magnitude larger than their size. For example, microbe-mineral interactions at the micro-scale can drive macro-scale processes such as rock formation and weathering. Many bioremediation technologies derive inspiration from microbial mineralization processes. Microbially induced calcium carbonate precipitation (MICP) can produce calcium carbonate (CaCO 3) precipitates which can be utilized as a biological cement to strengthen porous media by reducing fluid permeability in subsurface fractures or as an immobilization matrix to remove metal contaminants dissolved in groundwater. To make MICP a feasible and successful bioremediation technology in the world outside the lab, it is necessary to bridge the gap between the meso-scale research studies and macro-scale applications. This thesis focuses on such meso-scale studies but also contributes to bridging the gap in the other direction, i.e., meso-scale to micro-scale to gain a fundamental understanding of the cellular level processes behind MICP. The research presented here investigates two applications of MICP with a focus on controlling precipitate distribution and process efficiency in target environments. Subsurface precipitate distribution and metal partitioning during MICP were studied in novel reactive transport systems that mimic application-environment conditions. A radial flow reactor was used to study the spatial distribution of precipitates in conditions similar to subsurface injection well environments. The distribution and degree of metal partitioning during MICP was investigated in batch reactors and porous media flow cells to study kinetics and reactive transport effects on kinetics. In the radial flow environment, more precipitates formed away from the center injection zone. Results showed that longer reactant residence times and an equimolar ratio of calcium to urea were able to maximize precipitation efficiency. Metal partitioning could be maximized at low reactant flow rates and low metal concentrations. The novel flow cell set up used revealed a spatial decoupling between ureolysis and precipitation. A micro-scale investigation of the fundamental MICP process itself is presented wherein microbe-mineral interactions are observed at the cell level. A semi-correlative approach to investigating individual precipitates in microdroplets is presented, using a multitude of microscopy and microanalysis techniques. The presented studies capture MICP across a range of scales.Item Examining the impacts of reforestation and bioremediation projects on high school environmental science students' feelings of biophilia and learning about environmental issues in Hawaii(Montana State University - Bozeman, College of Letters & Science, 2019) Forster, Lorinda; Chairperson, Graduate Committee: Greg FrancisThis action research study focused on the overall problem of how to promote biophilia in students while learning in experential, place-based settings. Surveys, relections, scientific terminology probes, anootated drawings, modeling and pre/post quizzes were used to access the results of the study. Results of the study indicate that some students were inspired to follow career paths in the natural sciences while others were further disconnected from nature. Some progress was made in learning vocabulary and facts about places visited. Further work is needed to promote deeper learning and feelings of biophilia for students prone to disconnecting from nature.Item Bacterial community dynamics and variability in shallow aquifers(Montana State University - Bozeman, College of Letters & Science, 2019) Zelaya, Anna Jesus; Chairperson, Graduate Committee: Matthew Fields; Albert E. Parker, Kathryn L. Bailey, Ping Zhang, Joy Van Nostrand, Ning Daliang, Dwayne A. Elias, Jizhong Zhou, Terry C. Hazen, Adam P. Arkin and Matthew W. Fields were co-authors of the article, 'High spatiotemporal variability of bacterial diversity over short time scales with unique geohydrochemistry within a shallow, pristine aquifer' which is contained within this thesis.; Albert E. Parker, Kathryn L. Bailey, Ping Zhang, Joy Van Nostrand, Ning Daliang, Dwayne A. Elias, Jizhong Zhou, Terry C. Hazen, Adam P. Arkin and Matthew W. Fields were co-authors of the article, 'Population filtering in sediment biofilms from dynamic, source planktonic communities' which is contained within this thesis.; Sara Altenburg, Kathryn L. Bailey, Heidi J. Smith, Dwayne A. Elias and Matthew W. Fields were co-authors of the article, 'Community structure across particle size in-vitro and in-situ' which is contained within this thesis.; Heidi J. Smith, Frederick von Netzer and Matthew W. Fields were co-authors of the article, 'Contribution of total and viable DNA pools on diversity estimates of contaminated and non-contaminated subsurface sediments and groundwater' which is contained within this thesis.The shallow, terrestrial subsurface plays an important role in sustaining life above ground. Globally, subsurface environments are becoming increasingly threatened by anthropogenic sources of contamination and disturbance. The Oak Ridge Reservation (ORR) played an important role in the development of nuclear weapons during World War II. In the process, the underlying subsurface became contaminated with radioactive and hazardous wastes. Strategies to remediate polluted subsurface environments such as Oak Ridge have included natural attenuation by resident microbes such as bacteria. Such studies would be aided by a thorough understanding of the natural variability of microbial diversity over space and time in uncontaminated environments. We examined microbial community diversity and variability in both contaminated and non-contaminated sites of the ORR via ss-rRNA paired-end sequencing. An initial in-situ spatiotemporal survey of non-contaminated groundwater was conducted in order to understand how diversity changes over time in an undisturbed aquifer. Moreover, different models were used to estimate possible causal relationships between geochemical parameters and population distribution. Additionally, surrogate sediment samplers were filled with native sediment to assess the diversity of the attached bacterial fraction. Communities observed in the attached fraction were a subset of groundwater communities, although the dominant fractions of each were distinct. After initial assessment, in-vitro groundwater was used as both a nutrient source and microbial inoculum for bioreactors filled with glass beads of various sizes in order to understand particle size effects on community dynamics. Potential viability of resident microbes in both contaminated and non-contaminated groundwater and cored sediments was assessed using PMA-Seq and other complementary methods. Collectively, results show that 1) microbial communities in groundwater are highly dynamic over short timescales, 2) corresponding changes in geochemistry are mostly weakly related to changes in community structure (except perhaps after a disturbance or stress period), 3) community assembly may be affected by pore space volume, 4) PMA-viable populations differ between solid and aqueous fractions, 5) most subsurface cells are intact, and 6) traditional estimates of largely abundant populations may be influenced by the presence of DNA from non-viable members, resulting in less abundant populations being unmeasured or underestimated. The results of this study have implications for sampling and appropriate estimations of microbial populations in situ as well as the inherent variability in an uncontaminated shallow aquifer.Item Nuclear magnetic resonance studies of biofilm - porous media systems(Montana State University - Bozeman, College of Engineering, 2017) Kirkland, Catherine Mullinnix; Chairperson, Graduate Committee: Sarah L. Codd; Joseph D. Seymour (co-chair); Sarah L. Codd was a co-author of the article, 'Low-field borehole NMR applications in the near subsurface environment' submitted to the journal 'Vadose zone journal' which is contained within this thesis.; Randy Hiebert, Adrienne Phillips, Elliot Grunewald, David O. Walsh, Joseph D. Seymour and Sarah L. Codd were co-authors of the article, 'Biofilm detection in a model well-bore environment using low-field NMR' in the journal 'Groundwater monitoring and remediation' which is contained within this thesis.; Maria P. Herrling, Randy Hiebert, Andrew T. Bender, Elliot Grunewald, David O. Walsh and Sarah L. Codd were co-authors of the article, 'In-situ detection of subsurface biofilm using low-field NMR - a field study' in the journal 'Environmental science and technology' which is contained within this thesis.; Sam Zanetti, Elliot Grunewald, David O. Walsh, Sarah L. Codd and Adrienne J. Phillips were co-authors of the article, 'Detecting microbially-induced calcite precipitation (MICP) in a model well-bore using downhole low-field NMR' in the journal 'Environmental science and technology' which is contained within this thesis.; Jessica Weisbrodt, Catherine M. Kirkland, Nathan H. Williamson, Susanne Lackner, Sarah L. Codd, Joseph D. Seymour, Gisela Guthausen and Harald Horn were co-authors of the article, 'NMR investigation of water diffusion in different biofilm structures' submitted to the journal 'Biotechnology and bioengineering' which is contained within this thesis.Nuclear magnetic resonance (NMR) allows for in-situ non-invasive studies of opaque systems over a wide range of length and time scales, making the method uniquely suited to studies of biofilms and porous media. The research comprising this thesis uses NMR to explore biophysical, chemical, and transport properties within heterogeneous porous media systems at both a macro- and micro-scale. The macro-scale projects validate a low-field borehole NMR instrument to monitor field-scale environmental engineering applications like subsurface biofilms and microbially-induced calcite precipitation (MICP). Subsurface biofilms are central to bioremediation of chemical contaminants in soil and groundwater whereby micro-organisms degrade or sequester environmental pollutants like nitrate, hydrocarbons, chlorinated solvents and heavy metals. When composed of ureolytic microbes, subsurface biofilms can also induce calcite precipitation. MICP has engineering applications that include soil stabilization and subsurface barriers, as well as sealing of cap rocks and well-bore regions for carbon dioxide sequestration. To meet the design goals of these beneficial applications, subsurface biofilms and MICP must be monitored over space and time - a challenging task with traditional methods. The low-field borehole NMR tool recorded changes in the T 2 relaxation distribution where enhanced relaxation indicated biofilm accumulation in a sand bioreactor and in subsurface soil. Additionally, the tool was able to detect MICP in a sand bioreactor. The changed mineral surface of the sand lead to an increase in T 2 relaxation times. The complementary high-field NMR project investigated micro-scale internal structures and mass transport within biofilm granules used for wastewater treatment. Granular sludge, composed of spherical aggregates of biofilm grown without a carrier, is an innovative biological treatment method with the potential to vastly reduce the cost of wastewater treatment without sacrificing efficiency. Large gaps remain, however, in our understanding of the fundamental formation mechanisms and the factors that control granule activity and stability. Magnetic resonance imaging (MRI) identified heterogeneous internal structures within aerobic granular sludge where relaxation rates and diffusion coefficients vary. Ultimately, these results will help improve modeling for optimization of granular sludge wastewater treatment process design.Item Surfactant sorption at the soil-water interface and its influence on the bioavailability of soil-sorbed hydrophobic organic chemicals(Montana State University - Bozeman, College of Engineering, 1999) Jordan, Ryan NeilItem The development of a surfactant screening protocol for use with bioremediation strategies(Montana State University - Bozeman, College of Engineering, 1999) Buchanan, Patricia AnnItem Reactor optimization of volatilized p-xylene metabolism(Montana State University - Bozeman, College of Engineering, 1993) Vaughn, Barbara ChristineItem Transport and activity of dissimilatory metal-reducing bacteria in porous media for the remediation of heavy metals and chlorinated hydrocarbons(Montana State University - Bozeman, College of Engineering, 2001) Gerlach, Robin