Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 10 of 80
  • Thumbnail Image
    Item
    'Hypertemporal' remote sensing of plant function: a comparison of phenocam and geostationary operational environmental satellite NDVI data products
    (Montana State University - Bozeman, College of Agriculture, 2019) Douglas, James Thomas; Chairperson, Graduate Committee: Paul C. Stoy
    Ongoing climate warming is changing the seasonality of plant canopy function, but common approaches to explore these changes via polar-orbiting satellites often miss rapid canopy transitions due to infrequent observations. I explored the ability of satellites designed for studying weather systems, namely The Geostationary Operational Environmental Satellite (GOES), to track plant canopy status on time scales of minutes. With new capabilities to remotely sense in the infrared, the GOES weather satellites now have the capability to detect photosynthetic activity. Satellite observations of the normalized difference vegetation index (NDVI) are compared against near-surface phenological camera ("PhenoCam") observations from the National Ecological Observation Network (NEON, Inc.) at six sites every 15 minutes for one week in April 2019. Diurnal trends across both observation platforms showed the expected diurnal parabolic structure in NDVI with critical differences in NDVI magnitude between PhenoCams and GOES observations. One tailed T-test results show that there is variability between methods when measuring NDVI, with P-values less than 0.05 in all cases. This was anticipated due to correction factors needed for PhenoCam NDVI observations. However, additional variability can be attributed to other areas such as cloud cover, plant type, and heterogeneity. My proof-of-concept study demonstrates that raw NDVI data from both methods are often comparable, which lends credit to the notion that NDVI can be accurately observed from space at high (up to five minute) temporal resolution. With current research underway on the topics of atmospheric corrections and further surface validation, GOES has the potential to observe land surface attributes at up to 5-minute intervals across entire hemispheres for identifying phenology, disturbance and other vegetation dynamics in real time. With two hypertemporal methods at different spatial scales recently introduced, the research is primed to move towards a real time understanding of plant canopy function across the United States.
  • Thumbnail Image
    Item
    Evaluating growth-defense trade-offs in ponderosa pine (Pinus ponderosa) in response to stimulated bark beetle attack
    (Montana State University - Bozeman, College of Agriculture, 2019) Hull-Jones, Jessica Wrae; Chairperson, Graduate Committee: Amy Trowbridge
    The mountain pine beetle (MPB; Dentroctonus ponderosae, Hopkins, Coleoptera: Curculionidae: Scolytinae) and its associated blue stain fungi are considered to be among the greatest natural threat to conifer ecosystems worldwide. In response to a rapidly changing climate, namely more frequent and hotter droughts, bark beetles benefit through a combination of higher reproductive capacity and greater availability of weakened and stressed host trees. Conifers have potent constitutive and induced chemical defenses to resist the bark beetle-fungi complex, but investment in these carbon-based defenses may be constrained by trade-offs associated with a tree's inherent growth rate. Although there are trade-offs that exist among all processes, it is unclear whether those particular growth-defense trade-offs are measurable and can be compared between individuals within various populations. Here we assess the concentration and composition of constitutive and induced terpene chemical defenses as a function of intraspecific variation in growth rates (slow-versus fast-growing mature ponderosa pines). We examine these relationships in the context of classical plant defense theories as well as the current state of the field. By determining the variation in chemical responses to stimulated bark beetle attack we can further our understanding of potential resistance trade-offs that might exist in stands that are being selectively bred for fast growth.
  • Thumbnail Image
    Item
    A critical assessment of technologies for the study of organic matter in glaciers and ice sheets
    (Montana State University - Bozeman, College of Agriculture, 2019) Willis, Madelyne Claire; Chairperson, Graduate Committee: Christine Foreman
    Polar and temperate glaciers harbor active microbial communities and a substantial storage of organic carbon. These frozen ecosystems are especially sensitive to the effects of climate change and are expected to release roughly 15 teragrams of carbon by 2050. This creates a sense of urgency for further experimentation to increase our understanding of glacier ecosystem function and the impact glacier habitats have on local and global biogeochemical cycles. Due to the complex nature of organic matter, there is no single method which is suitable for every study. Technological advancements have improved methods for determining the quantity and quality of organic matter and emerging new technologies are providing faster and less-costly ways to overcome the challenges of working in these harsh environments. Consequently, a synthesis of peer-reviewed literature was conducted to summarize the current state of microbial ecology of glaciers and ice sheets, and to explore the techniques and new tools which are being developed to aid in the study of these rapidly disappearing ecosystems. The culmination of this work is an introduction and guide for analysts interested in examining the source, transformation history, and fate of organic matter in glacial systems. It was found that there is not one single technique superior to another, rather the appropriate technique is dependent on the questions being addressed and the resources available.
  • Thumbnail Image
    Item
    Irrigation ditches as novel intermittent stream networks that provide energetic subsidies to terrestrial ecosystems via aquatic insect emergence
    (Montana State University - Bozeman, College of Letters & Science, 2024) Heili, Nathaniel Maxwell; Chairperson, Graduate Committee: Wyatt F. Cross
    Non-perennial streams dominate fluvial networks, comprising over half of lotic ecosystems globally. Although little attention has been paid to these systems relative to those that are perennial, perhaps even less is known about the ecology of artificial intermittent streams. In irrigated river valleys, ditches comprise a substantial proportion of surface water networks, but little is known about their relative contributions to lotic habitat, freshwater biodiversity, and ecosystem processes. Because ditches are abundant and permeate arid floodplains, they create new opportunities for cross-ecosystem subsidies through emergence of adult aquatic insects. Here, we mapped the extent of an irrigation ditch network relative to natural surface waters in the Gallatin River Valley, Montana, USA. We also quantified the magnitude, composition, and phenology of aquatic insect emergence in ditches throughout a full irrigation season and compare emergence to nearby natural streams in the valley. We found that non-perennial streams, both natural and artificial, dominated the surface-water network, representing over 70% of total length. Irrigation ditches also constituted 37% and 23% of total length and surface area of all waterbodies in the valley, respectively. Insect emergence production from ditches averaged 32.0 mg m -2 d -1 and exceeded fluxes from nearby natural streams, which contained more classically sensitive taxa (i.e., Ephemeroptera, Trichoptera, and Plecoptera). Ditches varied in water temperature, substrate size, and flow permanence, leading to distinct emergence timing, species composition, and magnitudes of biomass flux. One of the study ditches dried early because of more 'junior' water rights, but this ditch provided the largest emergence subsidy, including a pulse of dipteran emergence at the onset of flow cessation. Annual production from intermittent ditches was ~6 g m -2 y -1 and was comparable to estimates from natural perennial streams. Although our study focused on one river valley of the western US, results suggest that these ecosystems contribute broadly to lotic habitat, heterogeneity, and cross-ecosystem subsidies via aquatic insect emergence. Given increasing demand for water and changes to flow regimes and water management driven by climate change, additional study is needed on these novel and underappreciated artificial ecosystems.
  • Thumbnail Image
    Item
    Fertility and reproductive health decisions connected to climate change and adaptation in Greenland
    (Montana State University - Bozeman, The Graduate School, 2024) Peterson, Malory Kaye; Chairperson, Graduate Committee: Elizabeth Rink; This is a manuscript style paper that includes co-authored chapters.
    The capacity for Kalaallit, the Inuit people of Greenland, to adapt to the effects of climate change will depend on sociodemographic change, population distribution, and existing health inequities in the country. Reproduction in Greenland is influenced by connection to place and access to natural resources, factors that will vary with climate adaptation. Given existing fertility and reproductive health disparities among Kalaallit women, there is a compelling reason to explore how climate change effects and adaptation might influence fertility decisions and population dynamics in Greenland. Rooted in the principles of community based participatory research, this exploratory and comparative study investigated the social, environmental, and economic resources that affect fertility decisions for Kalaallit in Greenland. The research presented contextualizes drivers of fertility decisions within Greenland's climate adaptation policy options and presents strategies to guide health studies in Greenland with principles of community based participatory research. Interviews were conducted with 35 reproductive-aged (18-49 years) men and women and 26 interviews with policymakers and key stakeholders in two communities about climate adaptation, natural resources, economic development, and fertility and reproductive health. Interviews were analyzed using constructivist grounded theory in collaboration with a Kalaallit community research partner. Results indicate that improving community capacity to address existing housing, education, and economic inequities is critical to supporting fertility and reproductive health, irrespective of climate change impacts. Participants observed climate change effects and expressed positive attitudes about Kalaallit ability to adapt and capitalize on benefits of climate change. Evidence from this study indicates that addressing development disparities in Greenland may immediately support fertility and reproductive health for Kalaallit people and facilitate equitable climate adaptation.
  • Thumbnail Image
    Item
    The effects of guiding climate change education through a social justice lens
    (Montana State University - Bozeman, College of Letters & Science, 2023) Arnold, John Francis; Chairperson, Graduate Committee: C. John Graves
    Climate change is one of the largest environmental and justice issues facing our world. Many young people are listening to the science and taking action, but many more are not. This project addressed climate change through exploring consequences on society, addressing public health, and impacts on societal infrastructure and stability. The social inequality of climate impacts was highlighted throughout to better engage students. Baseline, survey data was collected before we addressed climate change. After learning about public health concerns, students took the survey again and completed a short reflection. Students finished the study, after learning about impacts on societal infrastructure by taking a third survey, completing a second reflection, and with an interview. Results varied due to inconsistent participation throughout the study. Many students demonstrated an increase in understanding of climate change, but evidence to demonstrate their depth of understanding examples of people most disproportionately affected by climate change was inconsistent. Finally, students underreported eco-anxiety in survey results compared to interview results.
  • Thumbnail Image
    Item
    An interpreter's guide to filmmaking
    (Montana State University - Bozeman, College of Arts & Architecture, 2022) Andrus, Olivia Fay; Chairperson, Graduate Committee: Dennis Aig
    Politically divisive topics like climate change are notoriously difficult to effectively communicate to the public. Using a different communication approach called interpretation within the filmmaking process, we can bridge the gap current climate change films have today with their audience. Interpretation means "a mission-based communication process that forges emotional and intellectual connections between the interests of the audience and the meanings inherent in the resource," according to the National Association of Interpretation (What is interpretation?). In this paper I will analyze the history behind interpretation and the methodology in implementing this communication style within films. Through the works of various filmmakers such as, My Octopus Teacher (2020), Ice on Fire (2019), and Ocean Souls (2020), my own experience creating an interpretive short film, The Dolphin Dilemma, this paper will discuss how specific interpretive communication methods can take politically divisive subjects, like climate change and more effectively communicate science within documentaries.
  • Thumbnail Image
    Item
    Reconstructing large herbivore abundance and environmental interactions in postglacial North America
    (Montana State University - Bozeman, College of Letters & Science, 2023) Wendt IV, John Arthur Frederic; Chairperson, Graduate Committee: David B. McWethy; This is a manuscript style paper that includes co-authored chapters.
    Large herbivores drive critical ecological processes, yet their long-term dynamics and effects are poorly understood due to the limitations of existing paleoherbivore proxies. To address these shortcomings, long-term records of paleoherbivores were constructed by (i) applying new analytical techniques to existing bison fossil datasets; and (ii) examining fecal steroid data that characterize temporal changes in ungulate abundance and community composition. These paleoherbivore reconstructions were analyzed in relation to their environmental contexts to better understand herbivore-ecosystem interactions through time in three separate studies: First, spatiotemporal changes in postglacial bison distribution and abundance in North America were examined by summarizing fossil bison observations. Bison observations were compared with simulated climate variables in a distribution modeling framework to project probable bison distributions in 1000-year intervals from the Last Glacial Maximum to present in light of changing climatic drivers over time. Since the Bolling-Allerod Interstadial (14.7-12.9 ka) the geographic distribution of bison is primarily explained by seasonal temperature patterns. Second, Holocene records of bison abundance were compared to paleofire reconstructions spanning the midcontinental moisture gradient to determine the relative dominance of herbivores and fire as biomass consumers. Bison dominated biomass consumption in dry settings whereas fire dominated consumption in wetter environments. Historical distributions of herbivory and burning resemble those of Sub-Saharan Africa, suggesting a degree of generality in the feedbacks and interactions that regulate long-term consumer dynamics. Third, the utility of fecal steroids in lake sediments for reconstructing past herbivore abundance and identity was tested by (i) characterizing the fecal steroid signatures of key North American ungulates, (ii) comparing these signatures with multiproxy data preserved in lake sediments from the Yellowstone Northern Range, and (iii) comparing influxes of fecal steroids over time to historical records of ungulate biomass and use. Bison and/or elk were abundant at Buffalo Ford Lake over the past c. 2300 years. Ungulate densities in the watershed were highest in the early 20 th century and likely contributed to decreases in forage taxa and possibly increased lake production. These results demonstrate long-term ecological impacts of herbivores and highlight opportunities for continued development of paleoherbivore proxies.
  • Thumbnail Image
    Item
    Climate change at the air-water interface affects giant salmonfly (Pteronarcys californica) emergence timing and adult lifespan
    (Montana State University - Bozeman, College of Letters & Science, 2023) Roche, Alzada Lois; Chairperson, Graduate Committee: Lindsey K. Albertson
    Aquatic invertebrates experience complex temperature regimes throughout their life history, especially during the vulnerable life stage transition from aquatic to terrestrial habitats. When climate warming interacts with snowmelt in high elevation systems, it creates a novel set of conditions in which spring water temperatures remain within a narrow range from year-to-year while summer water and air temperatures rise. Giant salmonflies (Pteronarcys californica) depend on spring water temperature cues to time their large, synchronous emergence in early summer, but it is unknown how variable temperatures after this springtime cue affect life-history traits. We experimentally tested how changes in temperature in the 6 weeks before and after emergence affect emergence timing, emergence success, and adult lifespans. We found that the timing of emergence was 2.8 days earlier with each degree of warming during the weeks preceding emergence. However, there was no evidence that emergence success was affected by higher water temperature within our test temperature range (13-23°C). In the terrestrial adult stage, adult lifespans were shortened by increased air temperatures, especially when water temperatures during the aquatic juvenile stage had also been increased. The predicted lifespan was almost five times longer at the coldest air and water temperature combination than at the warmest (28 vs. 6 days). The shortest lifespans observed (3 days) are not likely to prevent successful reproduction, given that salmonflies can mate and oviposit within days of emergence. Still, because salmonflies can oviposit repeatedly for up to 80% of their lifespan, shortened lifespans may reduce total egg production and thus fitness. Our results indicate that rising water and air temperatures will impact not only the life history of the insects, but also the organisms in the riparian zone that rely on salmonfly emergence by altering the timing, magnitude, and duration of the nutrients provided by these large-bodied aquatic insects.
  • Thumbnail Image
    Item
    A forest entombed in ice: a unique record of mid-Holocene climate and ecosystem change in the northern Rocky Mountains, USA
    (Montana State University - Bozeman, College of Letters & Science, 2022) Stahle, Daniel Kent; Chairperson, Graduate Committee: David McWethy; This is a manuscript style paper that includes co-authored chapters.
    Across the high alpine of the northern Rocky Mountains small vestiges of perennial ice have endured for thousands of years. These ice patches reside hundreds of meters above modern treeline, with some persisting through mid-Holocene warmth and others establishing at the onset of a cooler period that began around 5,000-5,500 years BP. Recent warming-driven melting at the margins of one ice patch high on the Beartooth Plateau of northern Wyoming exposed over 30 intact mature whitebark pine (Pinus albicaulis) tree boles, all > 25 cm in diameter. We extracted cross-sectional samples from the stems of 27 preserved logs, and radiocarbon dated annual growth rings from 11 of these trees, anchoring the chronology to a date range spanning 5,947 to 5,436 years BP + or - 51.3 years. From this fossil wood chronology, we developed estimates of warm-season, annual, and biennial average temperatures for upper-elevation treeline during the mid-Holocene. To identify the predominant climate-growth relationships of the subfossil trees, we sampled live whitebark pine trees growing at an adjacent treeline site approximately 120 m lower in elevation. Temperature was found to be the major driver of variability in tree growth at the modern treeline location, with trees producing narrower (wider) rings during periods of cooler (warmer) growing season temperatures. Using linear and non-linear transfer functions based upon the stable statistical relationship between modern tree growth and temperature, we reconstructed past temperature estimates from the ice patch subfossil ring-width chronology. Our results provide estimates of mid-Holocene warm-season (and biennial) average temperatures ranging from 5.7-6.5 °C (-0.44-0.26 °C) respectively. A multi-century regional cooling trend beginning around 5,650 years BP resulted in average temperatures declining below a warm-season (biennial) critical threshold of ~5.8 °C (-0.34 °C), likely leading to the eventual death of the whitebark pine stand and subsequent formation of the ice-patch. This high-quality paleo-ecological dataset reveals a major shift in the alpine and forest ecotone on the Beartooth Plateau following the mid-Holocene warm period and offers further insight on the thermal limits of whitebark pine trees in the Greater Yellowstone Ecosystem.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.