Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    Item
    New insights into radical initiation by radical S-adenosylmethionine enzymes and activation of [FeFe]-hydrogenase
    (Montana State University - Bozeman, College of Letters & Science, 2020) Impano, Stella; Chairperson, Graduate Committee: Joan B. Broderick; Hao Yang, Adrien Pagnier, Richard Jodts, Ryan Swimley, Eric M. Shepard, Sarah M. Hill, Christopher D. James, William E. Broderick, Brian M. Hoffman and Joan B. Broderick were co-authors of the article, 'Photolytic cleavage of S-adenosylmethionine' which is contained within this dissertation.; Eric M. Shepard, Hao Yang, Adrien Pagnier, Ryan Swimley, Emma Dolen, William E. Broderick, Brian M. Hoffman and Joan B. Broderick were co-authors of the article, 'Generation of an ethyl radical trapped in active sites of [FeFe]-hydrogenase maturase enzymes HydE AND HydG' which is contained within this dissertation.; Eric M. Shepard, Hao Yang, Jeremiah N. Betz, Adrien Pagnier, William E. Broderick, Brian M. Hoffman and Joan B. Broderick were co-authors of the article, 'EPR and ENDOR spectroscopic evidence of an ammonium binding site in HydE' which is contained within this dissertation.; Adrien Pagnier, Eric M. Shepard, William E. Broderick and Joan B. Broderick were co-authors of the article, 'Investigation into all the necessary components required for [FeFe]-hydrogenase H-cluster maturation' which is contained within this dissertation.; Dissertations contains two articles of which Stella Impano is not the main author.
    Radical S-adenosylmethionine (SAM) enzymes harbor a [4Fe-4S] cluster in their active sites that coordinates a catalytically relevant small molecule SAM. During catalysis the S-5'C bond of SAM is reductively cleaved to generate a 5'-deoxyadenosyl radical that subsequently abstracts an H atom from substrate, allowing functionally diverse reactions to be achieved. Trapping of the 5'-deoxyadenosyl radical intermediate during turnover had proven difficult likely due to the formation of omega intermediate resulting from the oxidative addition of the 5'-deoxyadenosyl radical to the unique iron of the cluster. Recently, our laboratory showed that this elusive 5'-deoxyadenosyl can be liberated, captured, and characterized, in the absence of substrate, via photoinduced electron transfer (ET)-mediated reductive cleavage of SAM. Further, photolysis of [4Fe-4S] +-SAM complexes in different radical SAM enzymes revealed that the regioselective bond cleavage of SAM is dependent on the active site environment where either a 5'-deoxyadenosyl or a *CH 3, depending on the enzyme. When Sadenosyl- ethionine is used in place of SAM in the [4Fe-4S] +-SAM complex of HydE or HydG an ethyl radical is trapped. In either case, annealing of the methyl and ethyl radicals yields corresponding omega-like species, omega M and omega E, respectively. Functionally, HydE and HydG work together with a third protein HydF, to synthesize the H-cluster of [FeFe]-hydrogenase enzymes. HydG lyses tyrosine to generate CO and CN - ligands of the diiron core of the H-cluster, while the role and substrate of HydE are yet to be elucidated; however, it is hypothesized that this enzyme is responsible for dithiomethylamine (DTMA) bridge assembly. Our hypothesis is that HydE uses ammonium as a co-substrate and we propose that this polyatomic ion condenses with two CH 2S- like species to assemble the DTMA. We demonstrate for the first time via EPR and ENDOR spectroscopic techniques that HydE harbors an ammonium binding site; this NH 4 + would be stored in the active site of HydE prior to DTMA synthesis. Additionally, through in vitro [FeFe]-hydrogenase assays, we investigate what component of the essential E. coli lysate is required for H-cluster assembly. Results from this work suggest that the Hyd maturases are not the only proteins needed for H-cluster biosynthesis.
  • Thumbnail Image
    Item
    Ultrafast photochemistry of aqueous iron(III) complexes
    (Montana State University - Bozeman, College of Letters & Science, 2017) Danforth, Rebecca Ann; Chairperson, Graduate Committee: Erik Grumstrup; Bern Kohler was a co-author of the article, 'Ultrafast photochemical dynamics of hexaaqua iron(III) ion' in the journal 'Chemical physics letters' which is contained within this thesis.
    The ultrafast photochemical dynamics of aqueous iron(III) solutions were measured utilizing ultrafast pump probe spectroscopy. Aqueous solutions of iron(III) were prepared at low pH (<4.5) and low iron(III) concentration (<5 mM) to allow for small aquairon(III) complexes and ferrihydrite to be studied. Small monomeric and dimeric aquairon(III) complexes were studied to elucidate the mechanisms involved in the formation of OH ° after UV excitation which were previously known to generate OH ° in vastly different quantities. Upon excitation of Fe 3+, a proton is released from a coordinated water molecule to generate FeOH 2+ in less than 200 fs. The newly generated FeOH 2+ can then undergo numerous recombination pathways to regenerate the Fe 3+. Approximately 10% of the excited Fe 3+ undergoes photoreduction and subsequent release of OH ° and Fe 2+ within 20 ps. Exciting FeOH 2+, results in homolysis to form Fe 2+ and OH ° with a wavelength dependent yield with a lifetime of 20 ps. Fe 2(OH) 2 4+ does not appear to generate significant quantities of OH ° however, the dimer is photostable in comparison to Fe 3+ and FeOH 2+. To further the understanding of the primary kinetics of iron(III) in aqueous solutions, ferrihydrite nanoparticles were studied. Ferrihydrite exhibits similar dynamics to hematite in which electrons are excited into the conduction band of ferrihydrite. The electrons can then relax to the bottom of the conduction band within 390 fs before undergoing various recombination process. This limits the amount of iron(III) converted into iron(II) in ferrihydrite. All iron(III) systems studied show unique kinetics after excitation that elucidate the mechanisms behind the generation of OH °.
  • Thumbnail Image
    Item
    Studies directed toward the synthesis of pentalenic acid
    (Montana State University - Bozeman, College of Letters & Science, 2001) Schulz, Mark James
  • Thumbnail Image
    Item
    Photochemistry and photophysics of guanines
    (Montana State University - Bozeman, College of Letters & Science, 1974) Morgan, James Paul
  • Thumbnail Image
    Item
    Photochemical oxidation of arsenic(III) in ferrioxalate solutions and elk exposure to arsenic in Yellowstone's geothermal environments
    (Montana State University - Bozeman, College of Agriculture, 2002) Kocar, Benjamin David
  • Thumbnail Image
    Item
  • Thumbnail Image
    Item
    Development and exploration of nitrogen heterocycle methodologies : experimental and theoretical investigations
    (Montana State University - Bozeman, College of Letters & Science, 2003) Jones, Thomas Nicholas; Chairperson, Graduate Committee: Cynthia K. McClure
  • Thumbnail Image
    Item
    Photo induced absorption study of model organic charge transfer systems
    (Montana State University - Bozeman, College of Letters & Science, 2000) Hyfield, Amy Alta Elizabeth
  • Thumbnail Image
    Item
    The photochemical dimerizationn of norbornadiene using chromium carbonyls
    (Montana State University - Bozeman, College of Letters & Science, 1969) Hill, Brian Kellogg
  • Thumbnail Image
    Item
    Investigation of the dimerization of norbornadiene using photolysis of nickel and pseudo-nickel carbonyls
    (Montana State University - Bozeman, College of Letters & Science, 1972) Voecks, Gerald Elery
Copyright (c) 2002-2022, LYRASIS. All rights reserved.