Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Redox homeostasis and stress in mouse livers lacking the NADPH-dependent disulfide reductase systems
    (Montana State University - Bozeman, College of Letters & Science, 2019) Miller, Colin Gregory; Chairperson, Graduate Committee: Mary J. Cloninger; Edward E. Schmidt (co-chair); Arne Holmgren, Elias S.J. Arner and Edward E. Schmidt were co-authors of the article, 'Introduction --NADPH dependent and --independent disulfide reductase systems' in the journal 'Free radical biology and medicine' which is contained within this thesis.; Edward E. Schmidt was a co-author of the article, 'Disulfide reductase systems in the liver' in the journal 'British journal of pharmacology' which is contained within this thesis.; Jean A. Kundert, Justin R. Prigge, Julie Amato, Allison E. Perez and Edward E. Schmidt were co-authors of the article, 'Supplemental ascorbate compromises hepatocyte survival and increases risk of acute liver failure during severe oxidative stress' submitted to the journal 'Antioxidant' which is contained within this thesis.; Dissertation contains two articles of which Colin Gregory Miller is not the main author.
    This thesis includes two reviews that cover the background of cellular disulfide reduction, from its earliest form in hydrothermal vents and its evolution to the current, multifaceted systems that maintain cellular redox homeostasis, to the roles of the disulfide reductase systems in different subcellular compartments, as well as provide a current status for many of the unkown roles disulfide reductase enzymes play. Furthermore, this thesis includes two published research articles, both relating changes in the NADPH-dependent disulfide reductase systems to altered physiology and the possible impacts of these changes to human health (ie cancer, acetaminophen overdose or toxic arsenic exposure.) A third research paper is also included in this thesis, which demonstrates the pro-oxidant effects of administration of the antioxidant ascorbate to TrxR1/Gsr-null livers. This paper is potentially valuable both in a clinical aspect, where ascorbate might be prescribed to counter the effects of excess oxidants, but also to the general public, as ascorbate is one of the most commonly taken over-the-counter supplements. The final chapter of this thesis is fundamental groundwork for future projects aimed at identifying how cells manage accumulation of oxidants/compromised disulfide reductase systems. The two isotopically labled amino acids, L-(^34 S)Met and L-(^34 S)cystine, are valuable tools to monitor S-metabolism, both in the TrxR1/Gsr-null livers but also in other disease states, such as those mentioned above. L-(^34 S)cystine is of particular interest to one of our collaborators, Dr. Gina DeNicola, who plans to use L-(^34 S)cystine to monitor S-metabolism in pancreatic organoids to study pancreatic adenocarcinoma.
  • Thumbnail Image
    Item
    Microbial interactions with arsenite, hydrogen and sulfide in an acid-sulfate-chloride geothermal spring
    (Montana State University - Bozeman, College of Agriculture, 2008) D'Imperio, Seth; Chairperson, Graduate Committee: Timothy R. McDermott.
    The work presented in this thesis investigated the importance of hydrogen, sulfide and arsenite in microbial community structure and function within a model Acid-Sulfate- Chloride (ASC) spring in Yellowstone National Park. Previous studies in this spring found that microbial arsenite [As(III)] oxidation is absent in regions of the spring outflow channel where H 2S exceeds ~5 microM. Ex situ assays with microbial mat samples demonstrated immediate As(III) oxidation activity when H 2S was absent or in low concentrations, suggesting the presence of functional As(III) oxidase enzymes in regions of the spring where arsenite oxidation had not been previously observed. Cultivation efforts resulted in the isolation of an As(III)-oxidizing chemolithotroph phylogenetically related to the alpha-proteobacterium Acidicaldus. H 2S concentration appeared to be the most important constraint on spatial distribution of this organism. This was verified with pure culture modeling and kinetic experiments. Additionally, a study is presented that addresses the relative importance of dissolved hydrogen and sulfide for primary production in the same spring. Throughout the outflow channel where these gases could be detected, biological H 2S consumption rates exceeded those of H2 by at least three orders of magnitude. Molecular analysis showed that Hydrogenobaculum-like organisms dominate the microbial community in this region of the spring. Culturing efforts resulted in 30 Hydrogenobaculum isolates belonging to three distinct 16S rRNA gene phylotypes. The isolates varied with respect to electron donor (H 2S, H 2) and oxygen tolerance and requirement. These metabolic physiologies are consistent with in situ geochemical conditions. An isolate representative of the dominant 16S phylotype was used as a model organism for controlled studies to determine whether an organism capable of utilizing either of these substrates demonstrated preference for H 2S or H 2, or whether either electron donor exerted regulatory effects on the other. The organism studied utilized both H 2S and H 2 simultaneously and at rates roughly comparable to those measured in the ex situ field assays. Major conclusions drawn from this study are that phylogeny cannot be relied upon to predict physiology, and that, in ASC springs, H 2S clearly dominates H 2 as an energy source, both in terms of availability and apparent consumption rates.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.