Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
2 results
Search Results
Item Cooperative Adsorption and Diffusion of Small Alcohols in Metal–Organic Framework ZIF-8 and Intrinsically Microporous Polymer PTMSP(American Chemical Society, 2024-08) Rutherford, Steven W.Fundamental understanding of molecular interactions and transport within microporous materials displaying cooperative Type V adsorption is challenged by the unique features of this isotherm type. In order to capture a broad understanding of this uncommon, yet industrially relevant, behavior in microporous materials, this investigation examines the adsorption equilibria and kinetics of methanol and ethanol in both a metal–organic framework (MOF) material, ZIF-8, and a high free volume polymer of intrinsic microporosity, poly[1-(trimethylsilyl)-1-propyne] (PTMSP). A novel formulation that can capture the cooperative effects of small alcohols in its description of adsorption equilibria and kinetics is proposed. It is subsequently applied to successfully capture some previously uncharacterized or semiempirically characterized data for equilibria and the loading dependence of the diffusivity in both ZIF-8 and PTMSP, which are materials chosen for their industrial relevance. Finally, it is anticipated that the results of this study can fill the current void that exists in meaningful mechanistic and analytical descriptions of cooperative equilibrium and diffusion phenomena in microporous materials.Item Divergent Electrically Conductive Pathways in Yttrium-Based 2- and 3-Dimensional Metal–Organic Frameworks(American Chemical Society, 2024-07) Welty, Connor; Gormley, Eoghan L.; Oppenheim, Julius J.; Dincă, Mircea; Hendon, Christopher H.; Stadie, Nicholas P.Despite most porous framework solids exhibiting insulating character, some are known to conduct electrical charge. The peak performing conductive metal–organic frameworks are composed of redox-active hexasubstituted triphenylene linkers, but the impact of redox activity on material conductivity remains enigmatic because of limited availability of direct structure–function relationships. Here, we report a hexagonal yttrium-based conductive porous scaffold, comprising hexahydroxytriphenylene connected by Y-chains (YHOTP). In comparison to its known porous cubic counterpart (Y6HOTP2), this material features a 1000-fold increase in peak conductivity in polycrystalline samples (∼10–1 S cm–1). Furthermore, through a comparison of their electronic structures, we rationalize the origin of this difference and highlight the role of charge carrier concentration in dictating bulk electrical conductivity. Together, this work provides a design principle for the development of next-generation conductive porous frameworks.