Mechanisms of CRISPR-mediated immunity in Escherichia coli

Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

Prokaryotes are under constant threat from foreign genetic elements such as viruses and plasmids. To defend themselves against these genetic invaders prokaryotes have evolved extensive defense mechanisms. In this thesis I explore two such defense systems: prokaryotic Argonautes and CRISPR-systems. CRISPR-systems acquire short sequences derived from foreign genetic elements and store them in the CRISPR locus. In subsequent rounds of infection these stored sequences are used as guides by Cas proteins to target the invaders. Escherichia coli K-12 contains a type I-E CRISPR system, consisting of two CRISPR loci and eight cas genes. five of these cas genes, together with and 61-nucleotide CRISPR-RNA guide form the RNA-guided surveillance complex Cascade. This complex finds and binds foreign DNA targets that are complementary to its RNA guide. After target binding the helicase/nuclease Cas3 is recruited to the Cascade-DNA complex for destruction of the target. The goal of this research is to understand the molecular mechanisms that lead to target recognition and destruction in the type I-E CRISPR systems. Atomic resolution structures of the proteins involved in these CRISPR systems provide the blueprints of these proteins machines. Structure guided mutational analysis coupled with in vivo and in vitro biochemical experiments are used to investigate the underlying molecular mechanisms of this CRISPR system. Together, these results explain the rules of target recognition and Cas3 recruitment. Prokaryotic Argonautes have been hypothesized to defend against mobile genetic elements such as plasmids and viruses through guided nuclease activity. To test this hypothesis, we overexpressed 8 phylogenetically diverse prokaryotic Argonautes proteins in Escherichia coli and challenged them with seven bacteriophages. This resulted in robust protection against phage Lambda and phage P1 by four of the tested Argonautes, while little impact on phage infectivity was observed for the other phages tested. However, control experiments with a nuclease inactive Argonaute mutant and expression of an unrelated control protein showed similar protection against phage Lambda and phage P1. Collectively, our data suggest that protein overexpression in general, rather than Argonaute expression in particular, results in protection against 2 specific phages.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.