An interrogation of herpes simplex virus type-1 gene expression during neuronal infection

Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Agriculture

Abstract

Herpes Simplex virus-type-1 (HSV-1) is a ubiquitous human pathogen casually referred to as "the gift that keeps on giving". The seemingly benign recurring herpetic lesions caused by acute HSV-1 infection are an obnoxious reminder of an incurable infection. HSV-1 maintains lifelong persistence in the infected host through a unique form of infection in peripheral neurons, conventionally termed latency. The latently infected neuron acts as a viral reservoir and is the focal point of herpetic disease. The latent HSV-1 infection represents a brilliant orchestration of viral gene regulation, manipulation of highly polarized cells, and seamless evasion of immunological clearance. Though, the viral mechanisms and cellular factors that govern the establishment, maintenance and reactivation from latency are elusive and challenging to study. The work included here aims to uncover the cryptic factors involved in and supporting the latent HSV-1 infection. Authored publications include the demonstration of a recombinant HSV-1 that enables temporal discretion of viral gene expression, and the revelation of a stunning, yet obscure phenotype of neuronal infection. Next is the implementation of a single-cell culturing method using drop-based microfluidic technology to resolve HSV-1 infection in isolated neurons. Together, this work reveals that the early events of neuronal infection are critical to determining the lytic or latent outcome of infection. Inoculating dose impacts the kinetics of viral replication, and the establishment of lytic or latent HSV-1 infection. Furthermore, evaluation of viral gene expression during latent HSV-1 infection suggests that the distinction between lytic and latent HSV-1 infection is less mutually exclusive than is historically appreciated. Finally, I present preliminary and ongoing research suggesting that a cellular transcription factor called nuclear factor-kappa B (NF-kB) differentially engages in HSV-1 infection. NF-kB supports efficient lytic gene transcription in epithelial cells, while promoting the establishment of latent HSV-1 infection of neurons.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.