Using student perception of college environment for developing academic self-efficacy in engineering and computing education
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Montana State University - Bozeman, College of Education, Health & Human Development
Abstract
Next Generation Experts (NGE) are needed to fill engineering and computing careers. Access to college degree programs in these disciplines has been identified as an important contribution in addressing this problem. Students enter university with varying levels of academic readiness based on environmental circumstances outside their control. In Montana, many communities are limited in their ability to provide advance math and science coursework with even fewer providing engineering or computer science topics. Montana State University (MSU) is the state's land grant institution is charged with educating the sons and daughters of Montana's working class citizens. This problem of practice study considers the experience of academically underprepared (AUP) students interested in engineering or computing with retention initiatives in the Norm Asbjornson College of Engineering (NACOE). Understanding student perceptions of how the college environment influences academic self-efficacy development with engineering and computer science content can provide direction for retention programming. This qualitative study uses a complex theoretical framework, and phenomenography as a research approach to consider the range of student experience with an AUP retention program in the NACOE. Thirteen students participated in a study version of the AUP retention program which consisted of 6- topic focused, weekly meetings. Eight students provided feedback through a 1:1 interview following a semi-structured interview protocol. Interviews were transcribed, coded, and analyzed using an iterative process introducing a shift in perspective related to the relationship between physiological states and their influence over mastery, vicarious, and social persuasion experiences. Physiological states sit in the space between environmental experiences continually shading engagement between the environment and student. Findings described how physiological states interact with mastery, vicarious, and social persuasion experiences. Environmental factors, including people, had an influence on the developing relationship between AUP students who participated in a study version of the AUP retention program. Demonstrating the importance of structure, this study showed the value of community in developing relationships between students and academic content. Normalizing the variety of academic readiness levels shifts from deficit thinking to an allowance of gracious space to begin a college degree from any point without a hidden script of expectation. Borrowing from the college athletics' programs, introducing a Redshirt year changes the game. The Redshirt in Engineering Consortium borrowed and implemented this idea to support recruitment and retention in AUP populations. AUP students are also the NGE in engineering or computing. It is the responsibility of current experts to teach them they have potential to be successful in these disciplines through inclusive environments.