The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system
dc.contributor.author | Purevdorj, B. | |
dc.contributor.author | Orr, Miranda E. | |
dc.contributor.author | Stoodley, Paul | |
dc.contributor.author | Sheehan, Kathy B. | |
dc.contributor.author | Hyman, Linda E. | |
dc.date.accessioned | 2017-07-12T13:41:44Z | |
dc.date.available | 2017-07-12T13:41:44Z | |
dc.date.issued | 2007-05 | |
dc.description.abstract | A role of the FLO11 in Saccharomyces cerevisiae biofilm development in a flow cell system was examined. We carried out an ectopic FLO11 expression in the wild type (wt) BY4741 strain that has low levels of endogenous FLO11 transcript. In contrast to the nonadhesive wt, the FLO11 overexpression strain (BY4741 FLO111) readily adhered to both liquid-hydrophobic and liquid-hydrophilic solid interfaces and was able to grow as a biofilm monolayer in a flow system. Cellular features associated with FLO11 were examined and found to be consistent with the previous studies conducted in different strains of S. cerevisiae. When grown in suspended liquid culture, BY4741 FLO111 formed larger cellular aggregates (clumps), consisting of from five to 60 cells, and displayed an increased cell surface hydrophobicity, without changes in the cell size or growth rate, compared to wt. However, the invasive growth associated with FLO11 expression was not observed in BY4741 FLO111. The significance of these findings is discussed in the context of clinically and industrially relevant biofilms.This paper was not supported by the CBE, however the corresponding author has given us permission to post this on the CBE website because of the biofilm topic and the CBE affiliated authors. | en_US |
dc.identifier.citation | Purevdorj-Gage B, Orr ME, Stoodley P, Sheehan KB, Hyman LE, "The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system," FEMS Yeast Research 2007 7(3):372-379 | en_US |
dc.identifier.issn | 1567-1356 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/13217 | |
dc.title | The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 372 | en_US |
mus.citation.extentlastpage | 379 | en_US |
mus.citation.issue | 3 | en_US |
mus.citation.journaltitle | FEMS Yeast Research | en_US |
mus.citation.volume | 7 | en_US |
mus.contributor.orcid | Stoodley, Paul|0000-0001-6069-273X | en_US |
mus.data.thumbpage | 5 | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.doi | 10.1111/j.1567-1364.2006.00189.x | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Chemical Engineering. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 07-033_The_role_of_FL011_in.pdf
- Size:
- 325 KB
- Format:
- Adobe Portable Document Format
- Description:
- The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: