Analysis of the expression and function of chicken protocadherin 1 in neural crest cell migration and peripheral nervous system formation

Thumbnail Image



Journal Title

Journal ISSN

Volume Title


Montana State University - Bozeman, College of Letters & Science


The necessary steps of development from a single cell to a multi-celled functional organism are complex. Many molecules have been identified and their roles characterized in this process. One interesting population of cells includes the highly migratory neural crest cells (NCCs) unique to the vertebrate embryo and existing transiently during early embryonic development. The NCCs migrate along specific pathways at specific timepoints, stop at target locations, differentiate and give rise to a variety of cell types and tissues. Trunk NCCs must choose between two different migratory pathways: the ventral route, giving rise to neurons and glia of the dorsal root ganglia (DRG), sympathetic ganglia (SG), Schwann cells of the ventral root (VR); or the dorsolateral pathway, giving rise to melanocytes. Although many aspects of neural crest migration have been elucidated, cessation of migration and subsequent differentiation at target structures is not clearly defined. One family of molecules involved in various steps of NCC migration is the cell-cell adhesion molecules, the cadherins. To investigate the involvement of cadherins in NCC migration and differentiation during development using the avian model system, a combination of experiments and techniques including a library screen, in situ hybridization, in ovo electroporation, immunohistochemical and immunofluorescence staining as well as live time-lapse confocal imaging were performed. Results from these experiments produced the discovery and isolation of a novel molecule in the family of cadherin adhesion molecules, chicken protocadherin-1 (cPcdh1). Expression analysis showed cPcdh1 expressed in migrating NCCs, the DRG, SG and Schwann cells along the VR. A distinct expression pattern showed cPcdh1 along the periphery of the DRG, where crest cells are in an undifferentiated and mitotically active state. Further testing with deletion constructs and siRNA demonstrated when cPcdh1 function is inhibited, a greater percentage of cells migrate to the SG and VR at the expense of the DRG. Time-lapse confocal imaging showed cPcdh1 cells having an elongated cell shape with contact primarily being formed with neighboring cells along the periphery and longer cell-cell contact than observed in the control. Collectively, the results provide evidence for cPcdh1 involvement in NCC migration arrest and DRG formation.




Copyright (c) 2002-2022, LYRASIS. All rights reserved.