Distribution, phenology, growth, and overwinter mortality of age-0 smallmouth bass in the Yellowstone River, with implications for upstream range expansion

Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

Non-native fish introductions are a leading threat to freshwater biodiversity, and accurate assessments of future impact are often hindered by the challenge of anticipating future range expansion. Successful introductions of non-native Smallmouth Bass Micropterus dolomieu have occurred globally and often exhibit secondary spread to upstream habitat. This has occurred in the Yellowstone River, Montana (USA). Observations of adults in socio-economically valuable trout habitat have highlighted a need to better understand the controls on the upstream distribution of Smallmouth Bass in this system, particularly the influence of cold upstream climates on first-year growth and size-selective overwinter mortality (a potential life history bottleneck at northern latitudes). We documented the phenology, growth, and survival of age-0 Smallmouth Bass in relation to water temperature between the uppermost distribution of adults, and downstream regions where they are abundant. Successful reproduction (i.e., age-0 presence) was rare or absent throughout the uppermost 150 km of the upstream distribution of adults, suggesting that something currently prevents or discourages successful reproduction farther upstream. Surprisingly, the mean late-autumn body size of age-0 Smallmouth Bass did not differ significantly among the uppermost 200 km of their distribution, despite upstream declines in ambient water temperature. Although water temperature was a key attribute affecting age-0 growth, upstream shifts towards earlier hatching mediated the expected negative effect of colder upstream climates. Furthermore, surveys of overwinter survivors and simulations of age-0 starvation mortality indicated that age-0 individuals at the upstream extent of their distribution successfully recruited to the age-1 year-class in four consecutive years. Taken together, our results suggest that Smallmouth Bass have not yet reached the thermal limit of their upstream distribution, and that first-year growth, survival, and consequent spread by this non-native predator are probably driven by the complex interactions of spawn timing and ambient thermal and hydrologic regimes in the Yellowstone River.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.