Neutrophil Immunomodulatory Activity of (−)-Borneol, a Major Component of Essential Oils Extracted from Grindelia squarrosa

dc.contributor.authorSchepetkin, Igor A.
dc.contributor.authorÖzek, Gulmira
dc.contributor.authorÖzek, Temel
dc.contributor.authorKirpotina, Liliya N.
dc.contributor.authorKhlebnikov, Andrei I.
dc.contributor.authorQuinn, Mark T.
dc.date.accessioned2022-12-07T21:56:32Z
dc.date.available2022-12-07T21:56:32Z
dc.date.issued2022-07
dc.description.abstractGrindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), β-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, β-pinene, and borneol were present primarily as (−)-enantiomers (100% enantiomeric excess (ee) for (−)-α-pinene and (−)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (−)-β-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (−)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (−)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (−)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (−)-borneol as a novel modulator of human neutrophil function.en_US
dc.identifier.citationSchepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of (−)-Borneol, a Major Component of Essential Oils Extracted from Grindelia squarrosa. Molecules. 2022; 27(15):4897. https://doi.org/10.3390/molecules27154897en_US
dc.identifier.issn1420-3049
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/17470
dc.language.isoen_USen_US
dc.publisherMDPI AGen_US
dc.rightscc-byen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectborneol;en_US
dc.subjectcalcium influx;en_US
dc.subjecthemotaxis;en_US
dc.subjectssential oilsen_US
dc.subjectGrindelia squarrosaen_US
dc.subjectmonoterpeneen_US
dc.subjectneutrophilen_US
dc.titleNeutrophil Immunomodulatory Activity of (−)-Borneol, a Major Component of Essential Oils Extracted from Grindelia squarrosaen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage17en_US
mus.citation.issue15en_US
mus.citation.journaltitleMoleculesen_US
mus.citation.volume27en_US
mus.data.thumbpage11en_US
mus.identifier.doi10.3390/molecules27154897en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentEarth Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
schepetkin-oils-2022.pdf
Size:
873.69 KB
Format:
Adobe Portable Document Format
Description:
borneol essential oils

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.