Experimental characterization of pore-scale capillary pressure and corner film flow in 2D porous micromodels

Thumbnail Image



Journal Title

Journal ISSN

Volume Title


Montana State University - Bozeman, College of Engineering


Multiphase flow in porous media is ubiquitous in natural and engineering processes. A better understanding of the underlying pore-scale physics is crucial to effectively guiding, predicting and improving these applications. Traditional models describe multiphase flows in porous media based on empirical constitutive relations (e.g., capillary pressure vs. saturation), which, however, are known to be hysteretic. It has been theoretically shown that the hysteresis can be mitigated by adding new variables in the functional form. However, experiments are still needed to validate and further develop the theories. In particular, our understanding of capillary pressure characterization and numerous pore-scale mechanisms is still limited. For instance, during capillary pressure measurement, fluid phases become disconnected, making the bulk pressure an inaccurate measure for the actual capillary pressure. In a strongly wetting medium, wetting phase always remains connected by corner films, through which trapped water continues to drain until a capillary equilibrium is reached, but the effects of corner film flow are minimally characterized. In this thesis, two different experiments are presented. In the first experiment, we focused on the capillary pressure characterization and the effect of measurement resolution. Microscopic capillary pressure along with other geometric measures are characterized during drainage and imbibition. By strategically varying the pressure at the boundary, different equilibrium states were achieved and imaged at four different magnifications (i.e., 2, 1.25, 0.5, 0.25 micron/pixel). In the second experiment, we for the first time characterized the corner film flow again during drainage and imbibition condition employing particle image velocimetry. Overall, our results suggest that the calculated macroscale pressure P c and the bulk pressure drop agree reasonably well when only interfaces associated with the connected phases are considered. A spatial resolution of 2 micron/pixel seems to sufficiently resolve the interface, and further increasing the resolution does not have a significant impact on the results. Additionally, corner film flow was found to be an active transport mechanism. During drainage, trapped water is continuously drained over time via thin film, whereas during imbibition snap-off events are enhanced by wetting films. These observations call for future studies to carefully treat corner film flows when developing new predictive models.




Copyright (c) 2002-2022, LYRASIS. All rights reserved.