Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression

dc.contributor.authorPabst, Breana
dc.contributor.authorPitts, Betsey
dc.contributor.authorLauchnor, Ellen G.
dc.contributor.authorStewart, Philip S.
dc.date.accessioned2017-06-13T17:48:25Z
dc.date.available2017-06-13T17:48:25Z
dc.date.issued2016-08
dc.description.abstractAn experimental model that mimicked the structure and characteristics of in vivo biofilm infections, such as those occurring in the lung or in dermal wounds where no biomaterial surface is present, was developed. In these infections, microbial biofilm forms as cell aggregates interspersed in a layer of mucus or host matrix material. This structure was modeled by filling glass capillary tubes with an agarose gel that had been seeded with Staphylococcus aureus bacteria and then incubating the gel biofilm in medium for up to 30 h. Confocal microscopy showed that the bacteria formed in discrete pockets distributed throughout the gel matrix. These aggregates enlarged over time and also developed a size gradient, with the clusters being larger near the nutrient- and oxygen-supplied interface and smaller at greater depths. Bacteria entrapped in gels for 24 h grew slowly (specific growth rate, 0.06 h−1) and were much less susceptible to oxacillin, minocycline, or ciprofloxacin than planktonic cells. Microelectrode measurements showed that the oxygen concentration decreased with depth into the gel biofilm, falling to values less than 3% of air saturation at depths of 500 μm. An anaerobiosis-responsive green fluorescent protein reporter gene for lactate dehydrogenase was induced in the region of the gel where the measured oxygen concentrations were low, confirming biologically relevant hypoxia. These results show that the gel biofilm model captures key features of biofilm infection in mucus or compromised tissue: formation of dense, distinct aggregates, reduced specific growth rates, local hypoxia, and antibiotic tolerance.en_US
dc.identifier.citationPabst B, Pitts B, Lauchnor E, Stewart PS, “Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression,” Antimicrobial Agents and Chemotherapy, 2016 September 23;60(10):6294-301.en_US
dc.identifier.issn0066-4804
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13053
dc.titleGel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expressionen_US
dc.typeArticleen_US
mus.citation.extentfirstpage6294en_US
mus.citation.extentlastpage6301en_US
mus.citation.journaltitleAntimicrobial Agents and Chemotherapyen_US
mus.citation.volume60en_US
mus.contributor.orcidStewart, Philip S.|0000-0001-7773-8570en_US
mus.data.thumbpage5en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1128/AAC.01336-16en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentCivil Engineering.en_US
mus.relation.departmentEnvironmental Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
17-009_Gel-Entrapped_Staphylococcus_aureus_A1b.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format
Description:
Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.