Computationally modeling the aeroelastic physics of flapping-wing flight

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Engineering

Abstract

Flying insects use flapping wings to achieve flight at minuscule sizes. These flapping wings deform elastically under both inertial and aerodynamic loading. While conventional aircraft are often designed to reduce flexibility in their wings, insects harness the benefits of wing flexibility through elastic potential energy storage and enhancement of flapping wing- specific aerodynamic phenomena. Aircraft at insect size scales could have an inexhaustible number of uses ranging from monitoring of congested piping networks in oil refineries, to extraterrestrial land surveyance in thin atmospheres. If these micro air vehicles are to be realized, however, they will need to harness the aerodynamic benefits of flapping wings in order to overcome unfavorable ratios of lift to drag forces and inefficiencies of DC motors at such small sizes. Study of flapping wing aeroelastics is complicated due to the large-amplitude rotations of the wings, unsteady dynamics of the fluid regime, and small size and weight scales of the wings. While some experimental work focuses on techniques like measuring kinematics through motion tracking with high-speed videography, and partial flow field measurements through particle image velocimetry, it is difficult to conduct experiments that paint a full picture of the fluid-structure interaction of these wings. Instead, this research focuses on high-fidelity computational modeling through bilaterally coupled computational fluid dynamics and finite element analysis software to understand the fluid-structure interaction of flapping wings. In this work, a reduced order modeling technique capable of calculating the bulk aeroelastic physics of flapping wings at computational efficiencies suitable for parameter optimization studies was also validated. Finally, the influence of tapered wing thickness on aeroelastics and energetic efficiency was studied. While wing tapering reduced mean thrust, it had a greater reduction on the energetic requirement to produce flapping kinematics and was therefore more energetically efficient.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.