Laser desorption VUV postionization MS imaging of a cocultured biofilm
dc.contributor.author | Bhardwaj, C. | |
dc.contributor.author | Moore, J. F. | |
dc.contributor.author | Cui, Y. | |
dc.contributor.author | Gasper, G. L. | |
dc.contributor.author | Berstein, H. C. | |
dc.contributor.author | Carlson, Ross P. | |
dc.contributor.author | Hanley, L. | |
dc.date.accessioned | 2017-01-27T20:35:26Z | |
dc.date.available | 2017-01-27T20:35:26Z | |
dc.date.issued | 2013-09 | |
dc.description.abstract | Laser desorption postionization mass spectrometry (LDPI-MS) imaging is demonstrated with a 10.5 eV photon energy source for analysis and imaging of small endogenous molecules within intact biofilms. Biofilm consortia comprised of a synthetic Escherichia coli K12 coculture engineered for syntrophic metabolite exchange are grown on membranes and then used to test LDPI-MS analysis and imaging. Both E. coli strains displayed many similar peaks in LDPI-MS up to m/z 650, although some observed differences in peak intensities were consistent with the appearance of byproducts preferentially expressed by one strain. The relatively low mass resolution and accuracy of this specific LDPI-MS instrument prevented definitive assignment of species to peaks, but strategies are discussed to overcome this shortcoming. The results are also discussed in terms of desorption and ionization issues related to the use of 10.5 eV single-photon ionization, with control experiments providing additional mechanistic information. Finally, 10.5 eV LDPI-MS was able to collect ion images from intact, electrically insulating biofilms at ∼100 μm spatial resolution. Spatial resolution of ∼20 μm was possible, although a relatively long acquisition time resulted from the 10 Hz repetition rate of the single-photon ionization source. | en_US |
dc.identifier.citation | Bhardwaj C, Moore JF, Cui Y, Gasper GL, Bernstein HC, Carlson RP, Hanley L, "Laser desorption VUV postionization MS imaging of a cocultured biofilm," Analytical and Bioanalytical Chemistry. September 2013 405(22):6969-77 | en_US |
dc.identifier.issn | 1618-2642 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/12449 | |
dc.title | Laser desorption VUV postionization MS imaging of a cocultured biofilm | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 6969 | en_US |
mus.citation.extentlastpage | 6977 | en_US |
mus.citation.issue | 22 | en_US |
mus.citation.journaltitle | Analytical and Bioanalytical Chemistry | en_US |
mus.citation.volume | 405 | en_US |
mus.data.thumbpage | 7 | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1007/s00216-012-6454-0 | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Electrical & Computer Engineering. | en_US |
mus.relation.department | Mathematical Sciences. | en_US |
mus.relation.department | Mechanical & Industrial Engineering. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 13-030_Laser_desorption_VUV__A1b.pdf
- Size:
- 524.38 KB
- Format:
- Adobe Portable Document Format
- Description:
- Laser desorption VUV postionization MS imaging of a cocultured biofilm (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: