Generic properties of the infinite population genetic algorithm
dc.contributor.advisor | Chairperson, Graduate Committee: Tomas Gedeon | en |
dc.contributor.author | Hayes, Christina Savannah Maria | en |
dc.date.accessioned | 2013-06-25T18:38:49Z | |
dc.date.available | 2013-06-25T18:38:49Z | |
dc.date.issued | 2006 | en |
dc.description.abstract | The infinite population model for the genetic algorithm, where the iteration of the genetic algorithm corresponds to an iteration of a map G, is a discrete dynamical system. The map G is a composition of a selection operator and a mixing operator, where the latter models the effects of both mutation and crossover. This dissertation examines the finiteness and hyperbolicity of fixed points of this model. For a typical mixing operator, the fixed point set of G is finite and all fixed points are hyperbolic. | en |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/1448 | en |
dc.language.iso | en | en |
dc.publisher | Montana State University - Bozeman, College of Letters & Science | en |
dc.rights.holder | Copyright 2006 by Christina Savannah Maria Hayes | en |
dc.subject.lcsh | Genetic algorithms | en |
dc.title | Generic properties of the infinite population genetic algorithm | en |
dc.type | Dissertation | en |
thesis.catalog.ckey | 1203591 | en |
thesis.degree.committeemembers | Members, Graduate Committee: Marcy Barge; John Paxton; Richard Swanson; Richard Gillette | en |
thesis.degree.department | Mathematical Sciences. | en |
thesis.degree.genre | Dissertation | en |
thesis.degree.name | PhD | en |
thesis.format.extentfirstpage | 1 | en |
thesis.format.extentlastpage | 108 | en |
Files
Original bundle
1 - 1 of 1