The interplay between the central engine and the circumnuclear environment in Compton-thin AGN

dc.contributor.advisorChairperson, Graduate Committee: Anne Lohfinken
dc.contributor.authorChalise, Suloven
dc.contributor.otherThis is a manuscript style paper that includes co-authored chapters.en
dc.date.accessioned2024-04-10T19:20:36Z
dc.date.accessioned2024-05-04T15:52:40Z
dc.date.available2024-04-10T19:20:36Z
dc.date.available2024-05-04T15:52:40Z
dc.date.issued2022en
dc.description.abstractAll massive galaxies harbor a supermassive black hole (SMBH) at their galactic center. If these SMBH are actively feeding then they are called Active galactic nuclei (AGN). Their accretion system contains a corona, an accretion disk and an axisymmetric dusty torus. The torus can be connected physically and dynamically to the circumnuclear disk of the galaxy which acts as a molecular gas reservoir for material to be accreted onto the SMBH. Further, AGN can emit radiation from radio up to the gamma rays. The AGN accretion disk emits photons mostly in the optical/UV band which are Compton up-scattered in the corona to generate X-rays. If present, a jet can produce additional high-energy and Synchrotron emission. In some AGN, a huge amount of material can be stripped away from the accretion disk creating an outowing wind. These --radiation pressure, jet, wind etc.--inject energy back into the host galaxy, regulating the SMBH growth. There exist a complex interplay between the AGN feeding and feedback. Understanding this interaction between the central engine and its circumnuclear environment is vital in context of galaxy evolution. My work aims to study this interaction in low to moderately obscured (or Compton-thin) AGN using their broadband multi-epoch X-ray spectra plus other emission bands whenever appropriate. From the spectral analysis of broad-line radio galaxy 3C 109, I was able to constrain its high-energy cutoff for the first time. In another Seyfert galaxy Mrk 926, I was able to explore the origin of its soft excess, and found that a warm coronal origin was slightly preferred. Finally, I performed a joint multi-wavelength analysis with a physical torus model of a sample of Polar-scattered Seyfert 1 galaxies. I utilized their multi-epoch broadband X-ray spectra along with their infrared spectral/photometric data, and was able to constrain their torus properties. Despite being a sample of similar moderately-inclined Compton-thin AGN, I found a complex and varied distribution of gas and dust in their torus.en
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/18372
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.rights.holderCopyright 2022 by Sulov Chaliseen
dc.subject.lcshActive galactic nucleien
dc.subject.lcshTorus (Geometry)en
dc.subject.lcshInfrared spectraen
dc.subject.lcshX-raysen
dc.titleThe interplay between the central engine and the circumnuclear environment in Compton-thin AGNen
dc.typeDissertationen
mus.data.thumbpage14en
thesis.degree.committeemembersMembers, Graduate Committee: Dana W. Longcope; Bennett Link; Amy E. Reines; David L. Nideveren
thesis.degree.departmentPhysics.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage123en

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
chalise-the-interplay-2022.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
The interplay between the central engine and the circumnuclear environment in compton-thin AGN (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
825 B
Format:
Plain Text
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.