Genetic surveys in combination with laboratory studies on growth and response to herbicide can help design, evaluate, and optimize Eurasian watermilfoil management plans
dc.contributor.advisor | Chairperson, Graduate Committee: Ryan Thum | en |
dc.contributor.author | Guastello, Paula Ropp | en |
dc.contributor.other | Ryan A. Thum was a co-author of the article, 'Mesocosm evaluation of Eurasian and hybrid watermilfoil response to endothall in Jefferson Slough, Montana' in the journal 'Journal of aquatic plant management' which is contained within this thesis. | en |
dc.date.accessioned | 2018-09-17T17:19:59Z | |
dc.date.available | 2018-09-17T17:19:59Z | |
dc.date.issued | 2018 | en |
dc.description.abstract | Eurasian watermilfoil (Myriophyllum spicatum) is a top priority for aquatic plant managers in the United States. Dense mats of Eurasian watermilfoil obstruct irrigation and recreational activities, while drastically reducing property values and potentially providing a habitat for disease-carrying mosquitos. Nuisance populations are generally managed through herbicide use. Eurasian watermilfoil is capable of both sexual and clonal reproduction, creating a unique opportunity for adaptation: sexual reproduction generates genetic variation within a population, then fit genotypes can propagate via clonal reproduction. Pure Eurasian watermilfoil is genetically diverse, and additional genotypes result from frequent hybridization with native northern watermilfoil (Myriophyllum sibiricum). Recent studies have shown that genetic variation in Eurasian watermilfoil populations may affect herbicide efficacy in managed populations. Given the variability in herbicide response, I propose conducting site-specific studies to evaluate the response of genotypes in a waterbody to evaluate and optimize management strategies. In my thesis, I evaluated the potential to control nuisance pure and hybrid Eurasian watermilfoil with endothall in a riverine environment (Jefferson Slough, Montana). Molecular genetic surveys indicated that only one genotype of each taxon was present throughout the slough. I first compared vegetative growth and endothall response of the hybrid and Eurasian genotypes in the greenhouse, where I did not identify a difference in endothall sensitivity. Next, I evaluated the efficacy of an operational endothall treatment in Jefferson Slough. Similar to the greenhouse study results, hybrid and Eurasian watermilfoil were reduced to the same average biomass seven weeks after operational endothall treatment. Taken together, the greenhouse and operational field treatment indicate that the genotypes in Jefferson Slough were similarly susceptible to endothall. However, vegetative growth differences may have important management implications over time. In the greenhouse, Jefferson Slough hybrids grew significantly more than Eurasian watermilfoil in the absence of endothall. Additionally, there was a qualitative shift towards higher frequency of hybrids where the taxa intermixed. These results suggest a relatively higher potential for re-growth of hybrids compared to Eurasian watermilfoil following treatment. Jefferson Slough hybrids may require additional treatment to achieve sufficient long-term control. In conclusion, I discuss integration of genetic surveys into management and research priorities. | en |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/14549 | en |
dc.language.iso | en | en |
dc.publisher | Montana State University - Bozeman, College of Agriculture | en |
dc.rights.holder | Copyright 2018 by Paula Ropp Guastello | en |
dc.subject.lcsh | Aquatic plants | en |
dc.subject.lcsh | Hybridization | en |
dc.subject.lcsh | Herbicides | en |
dc.subject.lcsh | Noxious weeds | en |
dc.subject.lcsh | Plant genetics | en |
dc.title | Genetic surveys in combination with laboratory studies on growth and response to herbicide can help design, evaluate, and optimize Eurasian watermilfoil management plans | en |
dc.type | Thesis | en |
mus.data.thumbpage | 28 | en |
mus.relation.department | Plant Sciences & Plant Pathology. | en_US |
thesis.degree.committeemembers | Members, Graduate Committee: Jack Martin; Bruce D. Maxwell. | en |
thesis.degree.department | Plant Sciences & Plant Pathology. | en |
thesis.degree.genre | Thesis | en |
thesis.degree.name | MS | en |
thesis.format.extentfirstpage | 1 | en |
thesis.format.extentlastpage | 50 | en |