Profiling Luminal pH in Three-Dimensional Gastrointestinal Organoids Using Microelectrodes

Thumbnail Image

Date

2024-07

Journal Title

Journal ISSN

Volume Title

Publisher

MyJove Corporation

Abstract

The optimization and detailed characterization of gastrointestinal organoid models require advanced methods for analyzing their luminal environments. This paper presents a highly reproducible method for the precise measurement of pH within the lumina of 3D human gastric organoids via micromanipulator-controlled microelectrodes. The pH microelectrodes are commercially available and consist of beveled glass tips of 25 µm in diameter. For measurements, the pH microelectrode is advanced into the lumen of an organoid (>200 µm) that is suspended in Matrigel, while a reference electrode rests submerged in the surrounding medium in the culture plate. Using such microelectrodes to profile organoids derived from the human gastric body, we demonstrate that luminal pH is relatively consistent within each culture well at ~7.7 ± 0.037 and that continuous measurements can be obtained for a minimum of 15 min. In some larger organoids, the measurements revealed a pH gradient between the epithelial surface and the lumen, suggesting that pH measurements in organoids can be achieved with high spatial resolution. In a previous study, microelectrodes were successfully used to measure luminal oxygen concentrations in organoids, demonstrating the versatility of this method for organoid analyses. In summary, this protocol describes an important tool for the functional characterization of the complex luminal space within 3D organoids.

Description

Keywords

luminal pH, gastrointestinal organoid, microelectrodes

Citation

Lyon, K., Bansil, R., Bimczok, D. Profiling Luminal pH in Three-Dimensional Gastrointestinal Organoids Using Microelectrodes. J. Vis. Exp. (209), e66900, doi:10.3791/66900 (2024).

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as © MyJove Corporation
Copyright (c) 2002-2022, LYRASIS. All rights reserved.