Homotopy groups of contact 3-manifolds

Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

A contact 3-manifold (M, xi) is an three-dimensional manifold endowed with a completely nonintegrable distribution. In studying such a space, standard homotopy groups, which are defined using continuous/smooth maps, are not useful as they are not sensitive to the distribution. To remedy this, we consider horizontal homotopy groups which are defined using horizontal maps, i.e., smooth maps that lie tangent to the distribution at every point. Due to the distribution being completely nonintegrable, horizontal maps into (M, xi) have rank at most 1. This is used to show that the first horizontal homotopy group is uncountably generated and indicates that the higher horizontal homotopy groups are trivial. We also consider Lipschitz homotopy groups which are defined using Lipschitz maps. We first endow (M, xi) with a metric that is sensitive to the distribution, the Carnot-Caratheodory metric. With respect to this metric structure, the contact 3-manifold is purely 2-unrectifiable. This is used to show that the first Lipschitz homotopy group is uncountably generated and all higher Lipschitz homotopy groups are trivial. Furthermore, over the contact 3-manifold is a metric space, called the universal path space, that acts as a universal cover of the contact 3-manifold in that the universal path space is Lipschitz simply-connected and has a unique lifting property. Homotopy groups, horizontal homotopy groups, and Lipschitz homotopy groups are all instances of homotopy groups of sheaves, which are defined.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.