Understanding the effects of wildfire on the functional traits of plants and bees
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Montana State University - Bozeman, College of Letters & Science
Abstract
Diversity, often assessed by species richness, fosters ecosystem success, promoting ecosystem services, stability, and adaptation. Evaluations of functional trait composition are a better indicator of ecological process dynamics. Functional trait variation of species within a community (i.e., inter-specific variation) and of individuals within a species (i.e., intra-specific variation) may reflect adaptations and phenotypic variation contributing to the functional diversity of a community in the face of change. Wildfires have shifted from mixed-severity to frequent high-severity fires, due to fire suppression and climate change, modifying ecosystem function, trait selection pressure, and species sorting. Traits involved in plant-pollinator interactions can be used to understand the mechanisms underlying shifting interactions across communities and how post-wildfire environmental conditions affect community assembly, structure, and stability. We tested how productivity, time-since-burn, and wildfire severity influenced mean functional trait values and inter- and intra-specific functional trait variation of plants and bees known to interact in southwestern Montana, USA. Fieldwork was conducted from 2013-2017 in two locations that differed in productivity with similar fire histories of recent-mixed-severity, recent-high-severity, older-high-severity burns, and unburned areas. Functional traits involved in plant-bee interactions were selected and measured among plant and bee species observed across these various productivity, time-since-burn, and fire severity levels. We found that as productivity and time-since-burn increased, the mean functional trait values and inter- and intra-specific functional trait variation of plants and bees increased. In addition, productivity, time-since-burn, and fire severity affected the functional trait values and variation of plant species more than bee species. These results suggest that as productivity and time-since-burn increases so does trait diversity - promoting ecosystem function and stability. The increased effect of productivity and time-since-burn on plant functional traits compared to bee traits suggests the dispersal abilities of bees allow them to cope with the effects of fire, while plant species are more prone to productivity and time-since-burn habitat filtering and species sorting, potentially due to limited mobility. Our results support previous findings that shifting wildfire regimes from mixed to high-severity burns increases species sorting and limits trait variation after wildfire regardless of productivity but trait variation increases as time-since-burn and productivity increases.