Browsing by Author "Gerken, Tobias"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Item Air-Parcel Residence Times Within Forest Canopies(2017-06) Gerken, Tobias; Chamecki, Marcelo; Fuentes, Jose D.We present a theoretical model, based on a simple model of turbulent diffusion and first-order chemical kinetics, to determine air-parcel residence times and the out-of-canopy export of reactive gases emitted within forest canopies under neutral conditions. Theoretical predictions of the air-parcel residence time are compared to values derived from large-eddy simulation for a range of canopy architectures and turbulence levels under neutral stratification. Median air-parcel residence times range from a few sec in the upper canopy to approximately 30 min near the ground and the distribution of residence times is skewed towards longer times in the lower canopy. While the predicted probability density functions from the theoretical model and large-eddy simulation are in good agreement with each other, the theoretical model requires only information on canopy height and eddy diffusivities inside the canopy. The eddy-diffusivity model developed additionally requires the friction velocity at canopy top and a parametrized profile of the standard deviation of vertical velocity. The theoretical model of air-parcel residence times is extended to include first-order chemical reactions over a range of of Damköhler numbers (Da) characteristic of plant-emitted hydrocarbons. The resulting out-of-canopy export fractions range from near 1 for Da=10−3Da=10−3 to less than 0.3 at Da=10Da=10. These results highlight the necessity for dense and tall forests to include the impacts of air-parcel residence times when calculating the out-of-canopy export fraction for reactive trace gases.Item Convective suppression before and during the United States Northern Great Plains flash drought of 2017(2018-08) Gerken, Tobias; Bromley, Gabriel T.; Ruddell, Benjamin L.; Williams, Skylar; Stoy, Paul C.Flash droughts tend to be disproportionately destructive because they intensify rapidly and are difficult to prepare for. We demonstrate that the 2017 US Northern Great Plains (NGP) flash drought was preceded by a breakdown of land–atmosphere coupling. Severe drought conditions in the NGP were first identified by drought monitors in late May 2017 and rapidly progressed to exceptional drought in July. The likelihood of convective precipitation in May 2017 in northeastern Montana, however, resembled that of a typical August when rain is unlikely. Based on the lower tropospheric humidity index (HIlow), convective rain was suppressed by the atmosphere on nearly 50% of days during March in NE Montana and central North Dakota, compared to 30% during a normal year. Micrometeorological variables, including potential evapotranspiration (ETp), were neither anomalously high nor low before the onset of drought. Incorporating convective likelihood to drought forecasts would have noted that convective precipitation in the NGP was anomalously unlikely during the early growing season of 2017. It may therefore be useful to do so in regions that rely on convective precipitation.Item Downward transport of ozone rich air & implications for atmospheric chemistry in the Amazon rainforest(2016-01) Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patricia; Stoy, Paul C.; Tota, Julio; Trowbridge, Amy M.From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June–September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm−3s−1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.Item Environmental and biological controls on seasonal patterns of isoprene above a rain forest in central Amazonia(2018-06) Wei, Dandan; Fuentes, Jose D.; Gerken, Tobias; Chamecki, Marcelo; Trowbridge, Amy M.; Stoy, Paul C.; Katul, Gabriel G.; Fisch, Gilberto; Acevedo, Otavio; Manzi, Antonio O.; Randow, Celso von; Nascimento dos Santos, Rosa MariaThe Amazon rain forest is a major global isoprene source, but little is known about its seasonal ambient concentration patterns. To investigate the environmental and phenological controls over isoprene seasonality, we measured isoprene mixing ratios, concurrent meteorological data, and leaf area indices from April 2014 to January 2015 above a rain forest in the central Amazon, Brazil. Daytime median isoprene mixing ratios varied throughout the year by a factor of two. The isoprene seasonal pattern was not solely driven by sunlight and temperature. Leaf age and quantity also contributed to the seasonal variations of isoprene concentrations, suggesting leaf phenology was a crucial variable needed to correctly estimate isoprene emissions. A zero-dimensional model incorporating the estimated emissions, atmospheric boundary layer dynamics, and air chemistry was used to assess the contributions of each process on the variability of isoprene. Surface deposition was an important sink mechanism and accounted for 78% of the nighttime loss of isoprene. Also, chemical reactions destroyed isoprene and during 6:00 to 18:00 h local time 56, 77, 69, and 69% of the emitted isoprene was chemically consumed in June, September, December, and January, respectively. Entrainment fluxes from the residual layer contributed 34% to the early-morning above-canopy isoprene mixing ratios. Sensitivity analysis showed that hydroxyl radical (HO) recycling and segregation of isoprene–HO played relatively lesser roles (up to 16%) in regulating ambient isoprene levels. Nitric oxide (NO) levels dominated isoprene chemical reaction pathways associated with consumption and production of HO under low-NO and high volatile organic compound (VOC) conditions. While surface deposition and oxidative processes altered isoprene levels, the relative importance of these factors varied seasonally with leaf phenology playing a more important role.Item Investigating the mechanisms responsible for the lack of surface energy balance closure in a central Amazonian tropical rainforest(2017-04) Gerken, Tobias; Ruddell, Benjamin L.; Fuentes, Jose D.; Araújo, Alessandro; Brunsell, Nathaniel A.; Maia, Jair; Manzi, Antonio O.; Mercer, Juliane R.; dos Santos, Rosa Nascinmento; von Randow, Celso; Stoy, Paul C.This work investigates the diurnal and seasonal behavior of the energy balance residual (E) that results from the observed difference between available energy and the turbulent fluxes of sensible heat (H) and latent heat (LE) at the FLUXNET BR-Ma2 site located in the Brazilian central Amazon rainforest. The behavior of E is analyzed by extending the eddy covariance averaging length from 30 min to 4 h and by applying an Information Flow Dynamical Process Network to diagnose processes and conditions affecting E across different seasons. Results show that the seasonal turbulent flux dynamics and the Bowen ratio are primarily driven by net radiation (Rn), with substantial sub-seasonal variability. The Bowen ratio increased from 0.25 in April to 0.4 at the end of September. Extension of the averaging length from 0.5 (94.6% closure) to 4 h and thus inclusion of longer timescale eddies and mesoscale processes closes the energy balance and lead to an increase in the Bowen ratio, thus highlighting the importance of additional H to E. Information flow analysis reveals that the components of the energy balance explain between 25 and 40% of the total Shannon entropy with higher values during the wet season than the dry season. Dry season information flow from the buoyancy flux to E are 30-50% larger than that from H, indicating the potential importance of buoyancy fluxes to closing E. While the low closure highlights additional sources not captured in the flux data and random measurement errors contributing to E, the findings of the information flow and averaging length analysis are consistent with the impact of mesoscale circulations, which tend to transport more H than LE, on the lack of closure.Item The Kobresia pygmaea ecosystem of the Tibetan highlands - Origin, functioning and degradation of the world's largest pastoral alpine ecosystem: Kobresia pastures of Tibet.(2018-01) Miehe, Georg; Schleuss, Per-Marten; Seeber, Elke; Babel, Wolfgang; Biermann, Tobias; Braendle, Martin; Chen, Fahu; Coners, Heinz; Foken, Thomas; Gerken, Tobias; Graf, Hans-F.; Guggenberger, Georg; Hafner, Silke; Holzapfel, Maika; Ingrisch, Johannes; Kuzyakov, Yakov; Lai, Zhongping; Lehnert, Lukas; Leuschner, Christoph; Li, Xiaogang; Liu, Jianquan; Liu, Shibin; Ma, Yaoming; Miehe, Sabine; Mosbrugger, Volker; Noltie, Henry J.; Schmidt, Joachim; Spielvogel, Sandra; Unteregelsbacher, Sebastian; Wang, Yun; Willinghöfer, Sandra; Xu, Xingliang; Yang, Yongping; Zhang, Shuren; Opgenoorth, Lars; Wesche, KarstenWith 450,000 km^2 Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000–6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.Item Linking meteorology, turbulence, and air chemistry in the Amazon Rain Forest(2016-12) Fuentes, Jose D.; Chamecki, Marcelo; Nascimento dos Santos, Rosa Maria; von Randow, Celso; Stoy, Paul C.; Katul, Gabriel; Fitzjarrald, David; Manzi, Antonio O.; Gerken, Tobias; Trowbridge, Amy M.; Freire, Livia Souza; Ruiz-Plancarte, Jesus; Furtunato Maia, Jair Max; Tota, Julio; Dias, Nelson; Fisch, Gilberto; Schumacher, Courtney; Acevedo, Otavio C.; Mercer, Juliane Rezende; Yanez-Serrano, Ana MariaWe describe the salient features of a field study whose goals are to quantify the vertical distribution of plant-emitted hydrocarbons and their contribution to aerosol and cloud condensation nuclei production above a central Amazonian rain forest. Using observing systems deployed on a 50-m meteorological tower, complemented with tethered balloon deployments, the vertical distribution of hydrocarbons and aerosols was determined under different boundary layer thermodynamic states. The rain forest emits sufficient reactive hydrocarbons, such as isoprene and monoterpenes, to provide precursors of secondary organic aerosols and cloud condensation nuclei. Mesoscale convective systems transport ozone from the middle troposphere, enriching the atmospheric boundary layer as well as the forest canopy and surface layer. Through multiple chemical transformations, the ozone-enriched atmospheric surface layer can oxidize rain forest-emitted hydrocarbons. One conclusion derived from the field studies is that the rain forest produces the necessary chemical species and in sufficient amounts to undergo oxidation and generate aerosols that subsequently activate into cloud condensation nuclei.Item Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange(2019-10-19) Fu, Zheng; Stoy, Paul C.; Poulter, Benjamin; Gerken, Tobias; Zhang, Zhen; Wakbulcho, Guta; Niu, ShuliTerrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long‐term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water‐limited ecosystems versus temperature‐ and radiation‐limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water‐limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature‐ and radiation‐limited ecosystems. The Lund‐Potsdam‐Jena (LPJ) model and the Multi‐scale Synthesis and Terrestrial Model Inter‐comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.Item Mechanism of Daytime Strong Winds on the Northern Slopes of Himalayas, near Mount Everest: Observation and Simulation(2018-02) Sun, Fanglin; Ma, Yaoming; Hu, Zeyong; Li, Maoshan; Tartari, Gianni; Salerno, Franco; Gerken, Tobias; Bonasoni, Paolo; Cristofanelli, Paolo; Vuillermoz, ElisaThe seasonal variability of strong afternoon winds in a northern Himalayan valley and their relationship with the synoptic circulation were examined using in situ meteorological data from March 2006 to February 2007 and numerical simulations. Meteorological observations were focused on the lower Rongbuk valley, on the north side of the Himalayas (4270m MSL), where a wind profile radar was available. In the monsoon season (21 May-4 October), the strong afternoon wind was southeasterly, whereas it was southwesterly in the nonmonsoon season. Numerical simulations were performed using the Weather Research and Forecasting Model to investigate the mechanism causing these afternoon strong winds. The study found that during the nonmonsoon season the strong winds are produced by downward momentum transport from the westerly winds aloft, whereas those during the monsoon season are driven by the inflow into the Arun Valley east of Mount Everest. The air in the Arun Valley was found to be colder than that of the surroundings during the daytime, and there was a horizontal pressure gradient from the Arun Valley to Qomolangma Station (QOMS), China Academy of Sciences, at the 5200-m level. This explains the formation of the strong afternoon southeasterly wind over QOMS in the monsoon season. In the nonmonsoon season, the colder air from Arun Valley is confined below the ridge by westerly winds associated with the subtropical jet.Item Observation of strong winds on the northern slopes of Mount Everest in monsoon season(2017-11) Sun, Fanglin; Ma, Yaoming; Hu, Zeyong; Li, Maoshan; Gerken, Tobias; Zhang, Lang; Han, Cunbo; Sun, GenhouAn analysis of the local atmospheric circulation in a northern Himalayan valley in the region of Mount Everest is presented. Data were collected using an automatic weather station over a one-year period in 2014. A ground-based wind profiler radar (WPR) and an in situ GPS radiosonde (RS) were also employed. This study focuses on the characteristics of afternoon strong wind events in the downstream of Rongbuk Valley. We found that: (1) The occurrence of the southwesterly wind during non-monsoon was in good consistency with high values of westerly wind at high levels over this region and confirmed to be driven by the strong westerly jet aloft. (2) The strong afternoon wind in monsoon season has a persistent southeasterly direction, which differs from the prevailing direction of the strong wind in non-monsoon. This flow was found to be independent of the wind aloft and was strongly seasonal, developing at Qomolangma Station (QOMS) when the subtropical jet stream had moved northward and was most stable and strongest in the early monsoon season but before the rainy season. (3) The southeasterly wind in monsoon is colder than local air, suggesting that it is driven by a strong thermal gradient from the Arun Valley to QOMS. Our results contribute to improving our knowledge of local circulation patterns in the Himalayas, and also to gaining a detailed understanding of the mountain chain\'s role in both the monsoon system and regional transport of atmospheric pollutants.Item Scaling and similarity of the anisotropic coherent eddies in near-surface atmospheric turbulence(2018-03) Ghannam, Khaled; Bou-Zeid, Elie; Gerken, Tobias; Chamecki, MarceloThe low-wavenumber regime of the spectrum of turbulence commensurate with Townsend's "attached" eddies is investigated here for the near-neutral atmospheric surface layer (ASL) and the roughness sublayer (RSL) above vegetation canopies. The central thesis corroborates the significance of the imbalance between local production and dissipation of turbulence kinetic energy (TKE) and canopy shear in challenging the classical distance-from-the-wall scaling of canonical turbulent boundary layers. Using five experimental datasets (two vegetation canopy RSL flows, two ASL flows, and one open-channel experiment), this paper explores (i) the existence of a low-wavenumber k-1 scaling law in the (wind) velocity spectra or, equivalently, a logarithmic scaling ln(r) in the velocity structure functions; (ii) phenomenological aspects of these anisotropic scales as a departure from homogeneous and isotropic scales; and (iii) the collapse of experimental data when plotted with different similarity coordinates. The results show that the extent of the k-1 and/or ln(r) scaling for the longitudinal velocity is shorter in the RSL above canopies than in the ASL because of smaller scale separation in the former. Conversely, these scaling laws are absent in the vertical velocity spectra except at large distances from the wall. The analysis reveals that the statistics of the velocity differences Δu and Δw approach a Gaussian-like behavior at large scales and that these eddies are responsible for momentum/energy production corroborated by large positive (negative) excursions in Δu accompanied by negative (positive) ones in Δw. A length scale based on TKE dissipation collapses the velocity structure functions at different heights better than the inertial length scale.Item Surface Moistening Trends in the Northern North American Great Plains Increase the Likelihood of Convective Initiation(2018-01) Gerken, Tobias; Bromley, Gabriel T.; Stoy, Paul C.Land management impacts atmospheric boundary layer processes, and recent trends reducing the practice of summer fallow have led to increases in precipitation and decreases in temperature in the Canadian Prairie provinces during summer. It is unclear if such trends also impact the hydrometeorology of the adjacent U.S. northern Great Plains, parts of which have seen similar changes in land management. Here, MERRA-2 reanalysis data, eddy covariance observations, and a mixed-layer (ML) atmospheric modeling framework are combined to demonstrate that the likelihood of convectively preconditioned conditions has increased by approximately 10% since the mid-1980s and is now more sensitive to further decreases in the Bowen ratio (Bo) and maximum daily net radiation R-n,R-max in northeastern Montana. Convective season Bo in the study area has decreased from approximately 2 to 1 from the 1980s until the present, largely due to simultaneous increases in latent heat flux and decreases in sensible heat flux, consistent with observed decreases of summer fallow and increases in cropping. Daily net radiation Rn has not changed despite a significant decrease in May and June humidity lapse rates from the 1980s to present. Future research should determine the area of the U.S. Great Plains that has seen changes in the dynamics of the atmospheric boundary layer height and lifted condensation level and their crossings as a necessary condition for convective precipitation to occur and ascertain if ongoing changes in land management will lead to future changes in convective outcomes.Item The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology(2018-12) Fu, Zheng; Gerken, Tobias; Bromley, Gabriel T.; Araújo, Alessandro; Bonal, Damien; Burban, Benoit; Ficklin, Darren L.; Fuentes, Jose D.; Goulden, Michael L.; Hirano, Takashi; Kosugi, Yoshiko; Liddell, Michael; Nicolini, Giacomo; Niu, Shuli; Roupsard, Olivier; Stefani, Paolo; Mi, Chunrong; Tofte, Zaddy; Xiao, Jingfeng; Valentini, Riccardo; Wolf, Sebastian; Stoy, Paul C.Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m(-2) y(-1)) have the lowest net carbon uptake - or even carbon losses versus other study ecosystems because RE is of a similar magnitude. Sites that provided sub canopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 mu mol CO2 m(-2) s(-1) hPa(-1). Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m(-2) of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests.Item The surface-atmosphere exchange of carbon dioxide, water, and sensible heat across a dryland wheat-fallow rotation(2016-09) Vick, Elizabeth S. K.; Stoy, Paul C.; Tang, Angela C. I.; Gerken, TobiasSummer fallow - the practice of keeping a field out of production during the growing season - is a common practice in dryland wheat (Triticum aestivum L.) cropping systems to conserve soil water resources. Fallow also depletes soil carbon stocks and thereby soil quality. The area of summer fallow has decreased by tens of millions of hectares since the 1970s in the northern North American Great Plains as producers have recognized that avoiding fallow usually confers both economic and soil conservation benefits. Observed summertime cooling across parts of this region has coincided with fallow reduction, suggesting that the role of fallow in atmospheric processes needs to be ascertained. We measured carbon dioxide, latent heat, and sensible heat flux across a winter wheat - spring wheat - fallow sequence in Montana, USA to determine the effects of dryland crop management on ecosystem carbon resources and energy partitioning at the surface-atmosphere interface. Winter wheat and spring wheat fields were carbon sinks (F-c = -203 +/- 52 g C-CO2 m(-2) and -107 +/- 29 g C-CO2 m(-2)), respectively, during the April to September study period, but the fallow field was a carbon source of 135 +/- 73 g C-CO2 m(-2). Evapotranspiration in the wheat crops was over 100 mm greater than the 275 +/- 39 mm observed in the fallow field during the study period. Modeled maximum daily atmospheric boundary layer height was on average 210 m higher and up to 900 m higher in fallow compared to the, spring wheat field with more crossings of the modeled atmospheric boundary layer and lifted condensation level, suggesting that regional studies of the effects of fallow on near-surface temperature and moisture are necessary to understand the effects of fallow reduction on regional climate dynamics. Results demonstrate that fallow has a detrimental impact to soil carbon resources yet is less water intensive, with consequences for regional climate via its impacts on atmospheric boundary layer development and global climate via its carbon metabolism.Item Temporal Scales of the Nocturnal Flow Within and Above a Forest Canopy in Amazonia(2016-10) Santos, Daniel M.; Acevedo, Otavio C.; Chamecki, Marcelo; Fuentes, Jose D.; Gerken, Tobias; Stoy, Paul C.Multiresolution decomposition is applied to 10 months of nocturnal turbulence observations taken at eight levels within and above a forest canopy in Central Amazonia. The aim is to identify the contributions of different temporal scales of the flow above and within the canopy. Results show that turbulence intensity in the lower canopy is mostly affected by the static stability in the upper canopy. Horizontal velocity fluctuations peak at time scales longer than 100 s within the canopy, which correspond to the scale of non-turbulent submeso motions above the canopy. In the vertical velocity spectrum near the surface, the peak occurs at time scales around 100 s, which are larger than the time scales of the turbulent flow above the canopy. Heat-flux cospectra within the canopy peak at the same temporal scales as the vertical velocity fluctuations at that level, suggesting the existence of buoyancy driven turbulence. Case studies are presented as evidence that low-frequency fluctuations propagate towards the canopy interior more easily than does turbulence.Item Tornado seasonality in the southeastern United States(2018-06) Long, John A.; Stoy, Paul C.; Gerken, TobiasTornadoes are among the most destructive natural events and occur most frequently in the United States. It is difficult to ascertain if the frequency of tornadoes in the U.S. is increasing because our ability to observe and report tornado occurrence has increased over time. Previous studies have demonstrated that tornado likelihood has shifted toward earlier dates across the south-central United States over the past seven decades, the region sometimes called "Tornado Alley", if it can be assumed that seasonal observation effort has not shifted over time. It is unclear if such shifts in tornado seasonality have also occurred elsewhere, including the region of the southeastern United States where tornado likelihood has a bimodal annual distribution. We use circular methods to demonstrate that the date of observed peak tornado occurrence during the early tornado season has not changed in the past seven decades. However, the date of peak tornado occurrence during the later tornado season has shifted toward earlier dates by more than a week. The influence of tropical storms had no effect on changes in late-season tornado seasonality. The conclusions are robust with respect to whether tornado counts or tornado days are used as the response variable. Results demonstrate the ongoing need to encourage tornado preparedness in the southeastern U.S., where tornadoes tend to have a higher impact on humans, and to understand the mechanisms that underlie trends in tornado seasonality.