Browsing by Author "Khlebnikov, Andrei I."
Now showing 1 - 20 of 29
- Results Per Page
- Sort Options
Item 2-Arylacetamido-4-phenylamino-5-substituted pyridazinones as formyl peptide receptors agonists(2016-06) Vergelli, Claudia; Schepetkin, Igor A.; Ciciani, Giovanna; Cilibrizzi, Agostino; Crocetti, Letizia; Giovannoni, Maria Paola; Guerrini, Gabriella; Iacovone, Antonella; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Ye, Richard D.; Quinn, Mark T.N-Formyl peptide receptors (FPRs: FPR1, FPR2, and FPR3) are G protein-coupled receptors that play key roles in modulating immune cells. FPRs represent potentially important therapeutic targets for the development of drugs that could enhance endogenous anti-inflammation systems associated with various pathologies, thereby reducing the progression of inflammatory conditions. Previously, we identified 2-arylacetamide pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as a large number of FPR1/FPR2-dual agonists and several mixed-agonists for the three FPR isoforms. Here, we report a new series of 2-arylacetamido-4-aniline pyridazin-3(2H)-ones substituted in position 5 as a further development of these FPR agonists. Chemical manipulation presented in this work resulted in mixed FPR agonists 8a, 13a and 27b, which had EC50 values in nanomolar range. In particular, compound 8a showed a preference for FPR1 (EC50 =45nM), while 13a and 27b showed a moderate preference for FPR2 (EC50 =35 and 61nM, respectively). Thus, these compounds may represent valuable tools for studying FPR activation and signaling.Item Anti-Inflammatory Activity of Pyrazolo[1,5-a]quinazolines(MDPI AG, 2024-05) Crocetti, Letizia; Khlebnikov, Andrei I.; Guerrini, Gabriella; Schepetkin, Igor A.; Melani, Fabrizio; Giovannoni, Maria Paola; Quinn, Mark T.Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.Item Cardioprotective Effects of a Selective c-Jun N-terminal Kinase Inhibitor in a Rat Model of Myocardial Infarction(MDPI AG, 2023-02) Plotnikov, Mark B.; Chernysheva, Galina A.; Smol’yakova, Vera I.; Aliev, Oleg I.; Fomina, Tatyana I.; Sandrikina, Lyubov A.; Sukhodolo, Irina V.; Ivanova, Vera V.; Osipenko, Anton N.; Anfinogenova, Nina D.; Khlebnikov, Andrei I.; Atochin, Dmitriy N.; Schepetkin, Igor A.; Quinn, Mark T.Activation of c-Jun N-terminal kinases (JNKs) is involved in myocardial injury, left ventricular remodeling (LV), and heart failure (HF) after myocardial infarction (MI). The aim of this research was to evaluate the effects of a selective JNK inhibitor, 11H-indeno [1,2-b]quinoxalin-11-one oxime (IQ-1), on myocardial injury and acute myocardial ischemia/reperfusion (I/R) in adult male Wistar rats. Intraperitoneal administration of IQ-1 (25 mg/kg daily for 5 days) resulted in a significant decrease in myocardial infarct size on day 5 after MI. On day 60 after MI, a significant (2.6-fold) decrease in LV scar size, a 2.2-fold decrease in the size of the LV cavity, a 2.9-fold decrease in the area of mature connective tissue, and a 1.7-fold decrease in connective tissue in the interventricular septum were observed compared with the control group. The improved contractile function of the heart resulted in a significant (33%) increase in stroke size, a 40% increase in cardiac output, a 12% increase in LV systolic pressure, a 28% increase in the LV maximum rate of pressure rise, a 45% increase in the LV maximum rate of pressure drop, a 29% increase in the contractility index, a 14% increase in aortic pressure, a 2.7-fold decrease in LV end-diastolic pressure, and a 4.2-fold decrease in LV minimum pressure. We conclude that IQ-1 has cardioprotective activity and reduces the severity of HF after MI.Item Design, synthesis and biological evaluation of novel O-substituted tryptanthrin oxime derivatives as c-Jun N-terminal kinase inhibitors(Frontiers Media SA, 2022-09) Schepetkin, Igor A.; Kovrizhina, Anastasia R.; Stankevich, Ksenia S.; Khlebnikov, Andrei I.; Kirpotina, Liliya N.; Quinn, Mark T.; Cook, Matthew J.The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival, and cell death. Therefore, JNK represents an attractive target for therapeutic intervention. Herein, a panel of novel tryptanthrin oxime analogs were synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses (IC50). Several compounds exhibited submicromolar JNK binding affinity, with the most potent inhibitor being 6-(acetoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (1j), which demonstrated high JNK1-3 binding affinity (Kd = 340, 490, and 180 nM for JNK1, JNK2, and JNK3, respectively) and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcription activity in THP-1Blue cells and interleukin-6 (IL-6) production in MonoMac-6 monocytic cells (IC50 = 0.8 and 1.7 μM, respectively). Compound 1j also inhibited LPS-induced production of several other proinflammatory cytokines, including IL-1α, IL-1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF) in MonoMac-6 cells. Likewise, 1j inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of selected compounds in the JNK3 catalytic site that were in agreement with the experimental JNK3 binding data. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems.Item Development of potent isoflavone-based formyl peptide receptor 1 (FPR1) antagonists and their effects in gastric cancer cell models(Elsevier BV, 2023-12) Francavilla, Fabio; Sarcina, Federica; Schepetkin, Igor A.; Kirpotina, Lilya N.; Contino, Marialessandra; Schirizzi, Annalisa; De Leonardis, Giampiero; Khlebnikov, Andrei I.; D'Alessandro, Rosalba; Quinn, Mark T.; Lacivita, Enza; Leopoldo, MarcelloFormyl peptide receptor-1 (FPR1) is a G protein-coupled chemoattractant receptor that plays a crucial role in the trafficking of leukocytes into the sites of bacterial infection and inflammation. Recently, FPR1 was shown to be expressed in different types of tumor cells and could play a significant role in tumor growth and invasiveness. Starting from the previously reported FPR1 antagonist 4, we have designed a new series of 4H-chromen-2-one derivatives that exhibited a substantial increase in FPR1 antagonist potency. Docking studies identified the key interactions for antagonist activity. The most potent compounds in this series (24a and 25b) were selected to study the effects of the pharmacological blockade of FPR1 in NCl–N87 and AGS gastric cancer cells. Both compounds potently inhibited cell growth through a combined effect on cell proliferation and apoptosis and reduced cell migration, while inducing an increase in angiogenesis, thus suggesting that FPR1 could play a dual role as oncogene and onco-suppressor.Item Essential Oils from Monarda fistulosa: Chemical Composition and Activation of Transient Receptor Potential A1 (TRPA1) Channels(MDPI, 2020-10) Ghosh, Monica; Schepetkin, Igor A.; Ozek, Gulmira; Khlebnikov, Andrei I.; Damron, Derek S.; Quinn, Mark T.Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and β-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, β-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that β-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and β-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.Item Evaluation of Nitric Oxide-Donating Properties of 11H-indeno[1,2-b]quinoxalin-11-one Oxime (IQ-1) by Electron Paramagnetic Resonance Spectroscopy(MDPI AG, 2024-08) Andrianov, Viacheslav V.; Schepetkin, Igor A.; Bazan, Leah V.; Gainutdinov, Khalil L.; Kovrizhina, Anastasia R.; Atochin, Dmitriy N.; Khlebnikov, Andrei I.IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) is a specific c-Jun N-terminal kinase (JNK) inhibitor with anticancer and neuro- and cardioprotective properties. Because aryloxime derivatives undergo cytochrome P450-catalyzed oxidation to nitric oxide (NO) and ketones in liver microsomes, NO formation may be an additional mechanism of IQ-1 pharmacological action. In the present study, electron paramagnetic resonance (EPR) of the Fe2+ complex with diethyldithiocarbamate (DETC) as a spin trap and hemoglobin (Hb) was used to detect NO formation from IQ-1 in the liver and blood of rats, respectively, after IQ-1 intraperitoneal administration (50 mg/kg). Introducing the spin trap and IQ-1 led to signal characteristics of the complex (DETC)2-Fe2+-NO in rat liver. Similarly, the introduction of the spin trap components and IQ-1 resulted in an increase in the Hb-NO signal for both the R- and the T-conformers in blood samples. The density functional theory (DFT) calculations were in accordance with the experimental data and indicated that the NO formation of IQ-1 through the action of superoxide anion radical is thermodynamically favorable. We conclude that the administration of IQ-1 releases NO during its oxidoreductive bioconversion in vivo.Item Exploration of nitrogen heterocycle scaffolds for the development of potent human neutrophil elastase inhibitors(Elsevier BV, 2021-01) Cantini, Niccolò; Khlebnikov, Andrei I.; Crocetti, Letizia; Schepetkin, Igor A; Floresta, Giuseppe; Guerrini, Gabriella; Vergelli, Claudia; Bartolucci, Gianluca; Quinn, Mark T.; Giovannoni, Maria PaolaHuman neutrophil elastase (HNE) is a potent protease that plays an important physiological role in many processes but is also involved in a variety of pathologies that affect the pulmonary system. Thus, compounds able to inhibit HNE proteolytic activity could represent effective therapeutics. We present here a new series of pyrazolopyridine and pyrrolopyridine derivatives as HNE inhibitors designed as modifications of our previously synthesized indazoles and indoles in order to evaluate effects of the change in position of the nitrogen and/or the insertion of an additional nitrogen in the scaffolds on biological activity and chemical stability. We obtained potent HNE inhibitors with IC50 values in the low nanomolar range (10–50 nM), and some compounds exhibited improved chemical stability in phosphate buffer (t1/2 > 6 h). Molecular modeling studies demonstrated that inhibitory activity was strictly dependent on the formation of a Michaelis complex between the OH group of HNE Ser195 and the carbonyl carbon of the inhibitor. Moreover, in silico ADMET calculations predicted that most of the new compounds would be optimally absorbed, distributed, metabolized, and excreted. Thus, these new and potent HNE inhibitors represent novel leads for future therapeutic development.Item Inhibition of Acetylcholinesterase by Novel Lupinine Derivatives(MDPI AG, 2023-04) Schepetkin, Igor A.; Nurmaganbetov, Zhangeldy S.; Fazylov, Serik D.; Nurkenov, Oralgazy A.; Khlebnikov, Andrei I.; Seilkhanov, Tulegen M.; Kishkentaeva, Anarkul S.; Shults, Elvira E.; Quinn, Mark T.Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment due in part to a severe loss of cholinergic neurons in specific brain areas. AD is the most common type of dementia in the aging population. Although several acetylcholinesterase (AChE) inhibitors are currently available, their performance sometimes yields unexpected results. Thus, research is ongoing to find potentially therapeutic AChE inhibitory agents, both from natural and synthetic sources. Here, we synthesized 13 new lupinine triazole derivatives and evaluated them, along with 50 commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. The triazole derivative 15 [1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)octahydro-2H-quinolizine)] exhibited the most potent AChE inhibitory activity among all 63 lupinine derivatives, and kinetic analysis demonstrated that compound 15 was a mixed-type AChE inhibitor. Molecular docking studies were performed to visualize interaction between this triazole derivative and AChE. In addition, a structure-activity relationship (SAR) model developed using linear discriminant analysis (LDA) of 11 SwissADME descriptors from the 50 lupinine esters revealed 5 key physicochemical features that allowed us to distinguish active versus non-active compounds. Thus, this SAR model could be applied for design of more potent lupinine ester-based AChE inhibitors.Item Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species(MDPI AG, 2021-12) Özek, Gulmira; Schepetkin, Igor A.; Yermagambetova, Moldir; Özek, Temel; Kirpotina, Liliya N.; Almerekova, Shyryn S.; Abugalieva, Saule I.; Khlebnikov, Andrei I.; Quinn, Mark T.Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.Item Neuroprotective Effects of the Lithium Salt of a Novel JNK Inhibitor in an Animal Model of Cerebral Ischemia–Reperfusion(MDPI AG, 2022-08) Schepetkin, Igor A.; Chernysheva, Galina A.; Aliev, Oleg I.; Kirpotina, Liliya N.; Smol’yakova, Vera I.; Osipenko, Anton N.; Plotnikov, Mark B.; Kovrizhina, Anastasia R.; Khlebnikov, Andrei I.; Plotnikov, Evgenii V.; Quinn, Mark T.The c-Jun N-terminal kinases (JNKs) regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival, and cell death. Therefore, JNKs represent attractive targets for therapeutic intervention. In an effort to develop improved JNK inhibitors, we synthesized the lithium salt of 11H-indeno[1,2-b]quinoxaline-11-one oxime (IQ-1L) and evaluated its affinity for JNK and biological activity in vitro and in vivo. According to density functional theory (DFT) modeling, the Li+ ion stabilizes the six-membered ring with the 11H-indeno[1,2-b]quinoxaline-11-one (IQ-1) oximate better than Na+. Molecular docking showed that the Z isomer of the IQ-1 oximate should bind JNK1 and JNK3 better than (E)-IQ-1. Indeed, experimental analysis showed that IQ-1L exhibited higher JNK1-3 binding affinity in comparison with IQ-1S. IQ-1L also was a more effective inhibitor of lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue monocytes and was a potent inhibitor of proinflammatory cytokine production by MonoMac-6 monocytic cells. In addition, IQ-1L inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. In a rat model of focal cerebral ischemia (FCI), intraperitoneal injections of 12 mg/kg IQ-1L led to significant neuroprotective effects, decreasing total neurological deficit scores by 28, 29, and 32% at 4, 24, and 48 h after FCI, respectively, and reducing infarct size by 52% at 48 h after FCI. The therapeutic efficacy of 12 mg/kg IQ-1L was comparable to that observed with 25 mg/kg of IQ-1S, indicating that complexation with Li+ improved efficacy of this compound. We conclude that IQ-1L is more effective than IQ-1S in treating cerebral ischemia injury and thus represents a promising anti-inflammatory compound.Item Neuroprotective Effects of Tryptanthrin-6-Oxime in a Rat Model of Transient Focal Cerebral Ischemia(MDPI AG, 2023-07) Plotnikov, Mark B.; Chernysheva, Galina A.; Smol’yakova, Vera I.; Aliev, Oleg I.; Anishchenko, Anna M.; Ulyakhina, Olga A.; Trofimova, Eugene S.; Ligacheva, Anastasia A.; Anfinogenova, Nina D.; Osipenko, Anton N.; Kovrizhina, Anastasia R.; Khlebnikov, Andrei I.; Schepetkin, Igor A.; Drozd, Anastasia G.; Plotnikov, Evgenii V.; Atochin, Dmitriy N.; Quinn, Mark T.The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h. Animals in the experimental group were administered intraperitoneal injections of TRYP-Ox 30 min before reperfusion and 23 and 47 h after FCI. Neurological status was assessed 4, 24, and 48 h following FCI onset. Treatment with 5 and 10 mg/kg of TRYP-Ox decreased mean scores of neurological deficits by 35–49 and 46–67% at 24 and 48 h, respectively. At these doses, TRYP-Ox decreased the infarction size by 28–31% at 48 h after FCI. TRYP-Ox (10 mg/kg) reduced the content of interleukin (IL) 1β and tumor necrosis factor (TNF) in the ischemic core area of the MCA region by 33% and 38%, respectively, and attenuated cerebral edema by 11% in the left hemisphere, which was affected by infarction, and by 6% in the right, contralateral hemisphere 24 h after FCI. TRYP-Ox reduced c-Jun phosphorylation in the MCA pool at 1 h after reperfusion. TRYP-Ox was predicted to have high blood–brain barrier permeability using various calculated descriptors and binary classification trees. Indeed, reactive oxidant production was significantly lower in the brain homogenates from rats treated with TRYP-Ox versus that in control animals. Our data suggest that the neuroprotective activity of TRYP-Ox may be due to the ability of this compound to inhibit JNK and exhibit anti-inflammatory and antioxidant activity. Thus, TRYP-Ox may be considered a promising neuroprotective agent that potentially could be used for the development of new treatment strategies in cerebral ischemia.Item Neutrophil Immunomodulatory Activity of (−)-Borneol, a Major Component of Essential Oils Extracted from Grindelia squarrosa(MDPI AG, 2022-07) Schepetkin, Igor A.; Özek, Gulmira; Özek, Temel; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Quinn, Mark T.Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), β-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, β-pinene, and borneol were present primarily as (−)-enantiomers (100% enantiomeric excess (ee) for (−)-α-pinene and (−)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (−)-β-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (−)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (−)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (−)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (−)-borneol as a novel modulator of human neutrophil function.Item Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils(MDPI AG, 2022-05) Schepetkin, Igor A.; Özek, Gulmira; Özek, Temel; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Klein, Robyn A.; Quinn, Mark T.Despite their reported therapeutic properties, not much is known about the immunomodulatory activity of essential oils present in Artemisia species. We isolated essential oils from the flowers and leaves of five Artemisia species: A. tridentata, A. ludoviciana, A. dracunculus, A. frigida, and A. cana. The chemical composition of the Artemisia essential oil samples had similarities and differences as compared to those previously reported in the literature. The main components of essential oils obtained from A. tridentata, A. ludoviciana, A. frigida, and A. cana were camphor (23.0–51.3%), 1,8-cineole (5.7–30.0%), camphene (1.6–7.7%), borneol (2.3–14.6%), artemisiole (1.2–7.5%), terpinen-4-ol (2.0–6.9%), α-pinene (0.8–3.9%), and santolinatriene (0.7–3.5%). Essential oils from A. dracunculus were enriched in methyl chavicol (38.8–42.9%), methyl eugenol (26.1–26.4%), terpinolene (5.5–8.8%), (E/Z)-β-ocimene (7.3–16.0%), β-phellandrene (1.3–2.2%), p-cymen-8-ol (0.9–2.3%), and xanthoxylin (1.2–2.2%). A comparison across species also demonstrated that some compounds were present in only one Artemisia species. Although Artemisia essential oils were weak activators of human neutrophils, they were relatively more potent in inhibiting subsequent neutrophil Ca2+ mobilization with N-formyl peptide receptor 1 (FPR1) agonist fMLF- and FPR2 agonist WKYMVM, with the most potent being essential oils from A. dracunculus. Further analysis of unique compounds found in A. dracunculus showed that farnesene, a compound with a similar hydrocarbon structure as lipoxin A4, inhibited Ca2+ influx induced in human neutrophils by fMLF (IC50 = 1.2 μM), WKYMVM (IC50 = 1.4 μM), or interleukin 8 (IC50 = 2.6 μM). Pretreatment with A. dracunculus essential oils and farnesene also inhibited human neutrophil chemotaxis induced by fMLF, suggesting these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Thus, our studies have identified farnesene as a potential anti-inflammatory modulator of human neutrophils.Item Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis(MDPI AG, 2022-12) Schepetkin, Igor A.; Özek, Gulmira; Özek, Temel; Kirpotina, Liliya N.; Kokorina, Polina I.; Khlebnikov, Andrei I.; Quinn, Mark T.Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees. Black poplar (Populus balsamifera L.) buds are one of the primary sources of propolis. Despite their reported therapeutic properties, little is known about the innate immunomodulatory activity of essential oils from P. balsamifera and propolis. In the present studies, essential oils were isolated from the buds of P. balsamifera and propolis collected in Montana. The main components of the essential oil from P. balsamifera were E-nerolidol (64.0%), 1,8-cineole (10.8%), benzyl benzoate (3.7%), α-terpinyl acetate (2.7%), α-pinene (1.8%), o-methyl anisol (1.8%), salicylaldehyde (1.8%), and benzyl salicylate (1.6%). Likewise, the essential oil from propolis was enriched with E-nerolidol (14.4%), cabreuva oxide-VI (7.9%), α-bisabolol (7.1%), benzyl benzoate (6.1%), β-eudesmol (3.6%), T-cadinol (3.1%), 2-methyl-3-buten-2-ol (3.1%), α-eudesmol (3.0%), fokienol (2.2%), nerolidol oxide derivative (1.9%), decanal (1.8%), 3-butenyl benzene (1.5%), 1,4-dihydronaphthalene (1.5%), selina-4,11-diene (1.5%), α-cadinol (1.5%), linalool (1.4%), γ-cadinene (1.4%), 2-phenylethyl-2-methyl butyrate (1.4%), 2-methyl-2-butenol (1.3%), octanal (1.1%), benzylacetone (1.1%), and eremoligenol (1.1%). A comparison between P. balsamifera and propolis essential oils demonstrated that 22 compounds were found in both essential oil samples. Both were enriched in E-nerolidol and its derivatives, including cabreuva oxide VI and nerolidol oxides. P. balsamifera and propolis essential oils and pure nerolidol activated Ca2+ influx in human neutrophils. Since these treatments activated neutrophils, the essential oil samples were also evaluated for their ability to down-regulate the neutrophil responses to subsequent agonist activation. Indeed, treatment with P. balsamifera and propolis essential oils inhibited subsequent activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, nerolidol inhibited human neutrophil activation induced by fMLF (IC50 = 4.0 μM) and WKYMVM (IC50 = 3.7 μM). Pretreatment with the essential oils and nerolidol also inhibited human neutrophil chemotaxis induced by fMLF, again suggesting that these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Finally, reverse pharmacophore mapping predicted several potential kinase targets for nerolidol. Thus, our studies have identified nerolidol as a potential anti-inflammatory modulator of human neutrophils.Item Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11H-Indeno[1,2-b]quinoxalin-11-one Scaffold(MDPI AG, 2021-09) Liakhov, Serhii A.; Schepetkin, Igor A.; Karpenko, Olexander S.; Duma, Hanna I.; Haidarzhy, Nadiia M.; Kirpotina, Liliya N.; Kovrizhina, Anastasia R.; Khlebnikov, Andrei I.; Bagryanskaya, Irina Y.; Quinn, Mark T.c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.Item A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia–reperfusion injury in mice(2016-03) Atochin, Dmitriy N.; Schepetkin, Igor A.; Khlebnikov, Andrei I.; Seledtson, Victor I.; Swanson, Helen; Quinn, Mark T.; Huang, Paul L.The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30 min) with subsequent reperfusion (48 h). Mice were treated with IQ-1S (25 mg/kg) suspended in 10% solutol or with vehicle alone 30 min before and 24 h after middle cerebral artery (MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30 min of MCAO provoked by a filament and during the first 30 min of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48 h of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury.Item Novel Tryptanthrin Derivatives with Selectivity as c–Jun N–Terminal Kinase (JNK) 3 Inhibitors(MDPI AG, 2023-06) Schepetkin, Igor A.; Karpenko, Oleksander S.; Kovrizhina, Anastasia R.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Chekal, Stepan I.; Radudik, Alevtyna V.; Shybinska, Maryna O.; Quinn, Mark T.The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.Item Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential(MDPI AG, 2021-05) Schepetkin, Igor A; Plotnikov, Mark B.; Khlebnikov, Andrei I.; Plotnikova, Tatiana M.; Quinn, Mark T.Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.Item Phytochemical Composition and Biological Activity of the Essential Oil from Ericameria nauseosa Collected in Southwestern Montana, United States(MDPI AG, 2024-07) Schepetkin, Igor A.; Özek, Gulmira; Özek, Temel; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Ayçiçek, Kevser; Lavin, Matthew; Quinn, Mark T.Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird) is used in traditional medicine to treat various diseases; however, little is known about the immunomodulatory activity of essential oil from this plant. Thus, we isolated essential oil from the aerial parts of E. nauseosa and evaluated their chemical composition and biological activity. Compositional analysis of E. nauseosa essential oil revealed that the main (>2%) components were γ-decalactone (13.3%), cryptone (9.4%), terpinen-4-ol (9.3%), (E)-methyl cinnamate (6.0%), T-cadinol (4.7%), spathulenol (3.6%), 8Z-2,3-dihydromatricaria ester (3.1%), β-phellandrene (3.0%), p-cymen-8-ol (2.2%), 3-ethoxy-2-cycloocten-1-one (2.2%), and trans-p-menth-2-en-1-ol (2.1%). Distinctive features were the lactones (up to 15%) and polyacetylenes (up to 3.1%), including (2Z,8Z)-matricaria ester and 8Z-2,3-dihydromatricaria ester. A comparison with other reported E. nauseosa essential oil samples showed that our samples were distinct from those collected in other areas of the country; however, they did have the most similarity to one sample collected in North Central Utah. Pharmacological studies showed that E. nauseosa essential oil activated human neutrophil Ca2+ influx, which desensitized these cells to subsequent agonist-induced functional responses. Based on our previously reported data that nerolidol, β-pinene, spathulenol, sabinene, and γ-terpinene were active in human neutrophils, these compounds are the most likely constituents contributing to this immunomodulatory activity. However, the relatively high amount of polyacetylenes may also contribute, as these compounds have been characterized as potent immunomodulators.