Browsing by Author "Robbat, Albert Jr."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China(2014-10) Ahmed, Selena; Stepp, John Richard; Orians, Colin M.; Griffin, Timothy S.; Matyas, Corene; Robbat, Albert Jr.; Cash, Sean; Xue, Dayuan; Long, Chunlin; Unachukwu, Uchenna J.; Buckley, Sarabeth; Small, David; Kennelly, EdwardClimate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management practices to facilitate climate adaptation for sustainable crop production.Item Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality(2014-01) Ahmed, Selena; Orians, Colin M.; Griffin, Timothy S.; Buckley, Sarabeth; Unachukwu, Uchenna J.; Stratton, Anne E.; Stepp, John Richard; Robbat, Albert Jr.; Cash, Sean; Kennelly, Edward J.Extreme shifts in water availability linked to global climate change are impacting crops worldwide. The present study examines the direct and interactive effects of water availability and pest pressures on tea (Camellia sinensis; Theaceae) growth and functional quality. Manipulative greenhouse experiments were used to measure the effects of variable water availability and pest pressures simulated by jasmonic acid (JA) on tea leaf growth and secondary metabolites that determine tea quality. Water treatments were simulated to replicate ideal tea growing conditions and extreme precipitation events in tropical southwestern China, a major centre of tea production. Results show that higher water availability and JA significantly increased the growth of new leaves while their interactive effect was not significant. The effect of water availability and JA on tea quality varied with individual secondary metabolites. Higher water availability significantly increased total methylxanthine concentrations of tea leaves but there was no significant effect of JA treatments or the interaction of water and JA. Water availability, JA treatments or their interactive effects had no effect on the concentrations of epigallocatechin 3-gallate. In contrast, increased water availability resulted in significantly lower concentrations of epicatechin 3-gallate but the effect of JA and the interactive effects of water and JA were not significant. Lastly, higher water availability resulted in significantly higher total phenolic concentrations but there was no significant impact of JA and their interaction. These findings point to the fascinating dynamics of climate change effects on tea plants with offsetting interactions between precipitation and pest pressures within agro-ecosystems, and the need for future climate studies to examine interactive biotic and abiotic effects.Item Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality(2014-02) Ahmed, Selena; Orians, Colin M.; Griffin, Timothy S.; Buckley, Sarabeth; Unachukwu, Uchenna J.; Stratton, Anne E.; Stepp, John R.; Robbat, Albert Jr.; Cash, Sean; Kennelly, Edward J.Extreme shifts in water availability linked to global climate change are impacting crops worldwide. The present study examines the direct and interactive effects of water availability and pest pressures on tea (Camellia sinensis; Theaceae) growth and functional quality. Manipulative greenhouse experiments were used to measure the effects of variable water availability and pest pressures simulated by jasmonic acid (JA) on tea leaf growth and secondary metabolites that determine tea quality. Water treatments were simulated to replicate ideal tea growing conditions and extreme precipitation events in tropical southwestern China, a major centre of tea production. Results show that higher water availability and JA significantly increased the growth of new leaves while their interactive effect was not significant. The effect of water availability and JA on tea quality varied with individual secondary metabolites. Higher water availability significantly increased total methylxanthine concentrations of tea leaves but there was no significant effect of JA treatments or the interaction of water and JA. Water availability, JA treatments or their interactive effects had no effect on the concentrations of epigallocatechin 3-gallate. In contrast, increased water availability resulted in significantly lower concentrations of epicatechin 3-gallate but the effect of JA and the interactive effects of water and JA were not significant. Lastly, higher water availability resulted in significantly higher total phenolic concentrations but there was no significant impact of JA and their interaction. These findings point to the fascinating dynamics of climate change effects on tea plants with offsetting interactions between precipitation and pest pressures within agro-ecosystems, and the need for future climate studies to examine interactive biotic and abiotic effects.Item Striking changes in tea metabolites due to elevational effects(2018-10) Kfoury, Nicole; Morimoto, Joshua; Kern, Amanda; Scott, Eric R.; Orians, Colin M.; Ahmed, Selena; Griffin, Timothy S.; Cash, Sean B.; Stepp, John R.; Xue, Dayuan; Long, Chunlin; Robbat, Albert Jr.Climate effects on crop quality at the molecular level are not well-understood. Gas and liquid chromatography–mass spectrometry were used to measure changes of hundreds of compounds in tea at different elevations in Yunnan Province, China. Some increased in concentration while others decreased by 100’s of percent. Orthogonal projection to latent structures-discriminant analysis revealed compounds exhibiting analgesic, antianxiety, antibacterial, anticancer, antidepressant, antifungal, anti-inflammatory, antioxidant, anti-stress, and cardioprotective properties statistically (p = 0.003) differentiated high from low elevation tea. Also, sweet, floral, honey-like notes were higher in concentration in the former while the latter displayed grassy, hay-like aroma. In addition, multivariate analysis of variance showed low elevation tea had statistically (p = 0.0062) higher concentrations of caffeine, epicatechin gallate, gallocatechin, and catechin; all bitter compounds. Although volatiles represent a small fraction of the total mass, this is the first comprehensive report illustrating how normal variations in temperature, 5 °C, due to elevational effects impact tea quality.