Browsing by Author "Yunes, Nicolás"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Analytic Gravitational Waveforms for Generic Precessing Binary Inspirals(2017-02) Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil J.; Yunes, NicolásBinary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals.Item Approximate universal relations among tidal parameters for neutron star binaries(2017-01) Yagi, Kent; Yunes, NicolásOne of the largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars, a novel way to probe nuclear physics in the high-density regime. Previous studies have shown that only a certain combination of the individual (quadrupolar) deformabilities of each body (the so-called chirp tidal deformability) can be measured with second-generation, gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (i.e. approximately equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them as been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combination of the individual tidal deformabilities, that is equation-of-state-insensitive to 20% for binaries with masses less than 1.7M(circle dot). We show that these relations can be used to eliminate a combination of the tidal parameters from the list of model parameters, thus breaking degeneracies and improving the accuracy in parameter estimation. A simple (Fisher) study shows that the universal binary Love relations can improve the accuracy in the extraction of the symmetric combination of tidal parameters by as much as an order of magnitude, making the overall accuracy in the extraction of this parameter slightly better than that of the chirp tidal deformability. These new universal relations and the improved measurement accuracy on tidal parameters not only are important to astrophysics and nuclear physics, but also impact our ability to probe extreme gravity with gravitational waves and cosmology.Item Approximate universal relations for neutron stars and quark stars(2017-04) Yagi, Kent; Yunes, NicolásNeutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star’s internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star’s internal structure. One such set of relations is between the star’s moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I–Love–Q relations. Similar relations hold among the star’s multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.Item Black hole continuum spectra as a test of general relativity: quadratic gravity(2017-05) Ayzenberg, Dimitry; Yunes, NicolásObservations of the continuum spectrum emitted by accretion disks around black holes allows us to infer their properties, including possibly whether black holes are described by the Kerr metric. Some modified gravity theories do not admit the Kerr metric as a solution, and thus, continuum spectrum observations could be used to constrain these theories. We here investigate whether current and next generation x-ray observations of the black hole continuum spectrum can constrain such deviations from Einstein\'s theory, focusing on two well-motivated modified quadratic gravity theories: dynamical Chern-Simons gravity and Einstein-dilaton-Gauss-Bonnet gravity. We do so by determining whether the non-Kerr deviations in the continuum spectrum introduced by these theories are larger than the observational error intrinsic to the observations. We find that dynamical Chern-Simons gravity cannot be constrained better than current bounds with current or next generation continuum spectrum observations. Einstein-dilaton-Gauss-Bonnet gravity, however, may be constrained better than current bounds with next generation telescopes, as long as the systematic error inherent in the accretion disk modeling is decreased below the predicted observational error.Item Black Hole Spectroscopy with Coherent Mode Stacking(2017-04) Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, NicolásThe measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing fundamental properties of black holes in General Relativity, and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency, and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the l=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.Item Can We Probe Planckian Corrections at the Horizon Scale with Gravitational Waves?(2019-02) Addazi, Andrea; Marcianò, Antonino; Yunes, NicolásFuture detectors can be used as gravitational microscopes to probe the horizon structure of merging black holes with gravitational waves. But, can this microscope probe the quantum regime? We study this interesting question and find that (i) the error in the distance resolution is exponentially sensitive to errors in the Love number, (ii) the uncertainty principle of quantum gravity forces a fundamental resolution limit, and (iii) conclusions about the structure of spacetime at small distances rely on assumptions about the properties of the (unknown) compact objects considered.Item Cosmological evolution and Solar System consistency of massive scalar-tensor gravity(2017-09) Saint Alby, Thibaut Arnoulx de Pirey; Yunes, NicolásThe scalar-tensor theory of Damour and Esposito-Farese recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalarfield-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.Item Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories(2016-11) Anderson, David; Yunes, Nicolás; Barausse, EnricoCertain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farese, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars (\spontaneous scalarization\") or in sufficiently tight binary neutron-star systems (\"dynamical/induced scalarization\"). The original scalar-tensor theory proposed by Damour and Esposito-Farese is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars."Item Extremal black holes in dynamical Chern-Simons gravity(2016-12) McNees, Robert J.; Stein, Leo C.; Yunes, NicolásRapidly rotating black hole (BH) solutions in theories beyond general relativity (GR) play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of GR. Such solutions are often difficult to find in beyond-general-relativity theories due to the inclusion of additional fields that couple to the metric nonlinearly and non-minimally. In this paper, we consider rotating BH solutions in one such theory, dynamical Chern-Simons (dCS) gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dCS gravity as an effective field theory and work in the decoupling limit, where corrections are treated as small perturbations from GR. We perturb about the maximally rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace, respectively, suffices to ensure a fidelity of over 99% relative to full numerical solutions. The leading-order mode in the Legendre expansion of the trace of the metric perturbation contains a logarithmic divergence at the extremal Kerr horizon, which is likely to be unimportant as it occurs inside the perturbed dCS horizon. The techniques employed here should enable the construction of analytic, closed-form expressions for the scalar field and metric perturbations on a background with arbitrary rotation.Item Four-hair relations for differentially rotating neutron stars in the weak-field limit(2015-10) Bretz, Joseph; Yagi, Kent; Yunes, NicolásThe opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). These approximations allow us to analytically derive approximately universal relations that allow us to determine all of the multipole moments of a (perturbative) differentially rotating star in terms of only the first four moments. These new four-hair relations for differentially rotating neutron stars are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.Item Gravitational wave memory in Lambda CDM cosmology(2017-09) Bieri, Lydia; Garfinkle, David; Yunes, NicolásWe examine gravitational wave memory in the case where sources and detector are in Lambda CDM cosmology. We consider the case where the Universe can be highly inhomogeneous, but gravitational radiation is treated in the short wavelength approximation. We find results very similar to those of gravitational wave memory in an asymptotically flat spacetime; however, the overall magnitude of the memory effect is enhanced by a redshift-dependent factor. In addition, we find the memory can be affected by lensing.Item Gravitational wave probes of parity violation in compact binary coalescences(2018-03) Alexander, Stephon H.; Yunes, NicolásIs gravity parity violating? Given the recent observations of gravitational waves from coalescing compact binaries, we develop a strategy to find an answer with current and future detectors. We identify the key signatures of parity violation in gravitational waves: amplitude birefringence in their propagation and a modified chirping rate in their generation. We then determine the optimal binaries to test the existence of parity violation in gravity, and prioritize the research in modeling that will be required to carry out such tests before detectors reach their design sensitivity.Item Gravitational-wave mediated preheating(2015-04) Alexander, Stephon; Cormack, Sam; Marcianò, Antonino; Yunes, NicolásWe propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton-matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation-graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern-Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter dominationItem I-Love-Q relations: from compact stars to black holes(2016-04) Yagi, Kent; Yunes, NicolásThe relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle-Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a particular parity-violating modified theory and find that these quantities do not tend to their BH counterparts as the anisotropic stellar sequence approaches the BH limit.Item Improved binary pulsar constraints on the parametrized post-Einsteinian framework(American Physical Society, 2020-05) Nair, Remya; Yunes, NicolásThe parametrized post-Einsteinian formalism was developed to search for generic deviations from general relativity with gravitational waves. We here present constraints on this framework using Bayesian analysis of a set of binary pulsar observations. In particular, we use measurements of the Keplerian and post-Keplerian parameters of six different binary pulsar systems, and Markov-Chain Monte-Carlo exploration to calculate posteriors on the parametrized post-Einsteinian parameters and derive robust constraints. We find improvements of 1–2 orders of magnitude in the strength of constraints when combining all six observations, relative to what one can achieve when using only the double binary pulsar. We also find that the constraints are robust to any correlation with the binary’s component masses. The bounds on the parametrized post-Einsteinian framework derived here could be used as a prior in future Bayesian tests of general relativity with gravitational wave observations.Item Improved gravitational-wave constraints on higher-order curvature theories of gravity(American Physical Society, 2021-07) Perkins, Scott E.; Nair, Remya; Silva, Hector O.; Yunes, NicolásGravitational wave observations of compact binaries allow us to test general relativity (and modifications thereof) in the strong and highly dynamical field regime of gravity. Here, we confront two extensions to general relativity, dynamical Chern-Simons, and Einstein-dilaton-Gauss-Bonnet theories, against the gravitational wave sources from the GWTC-1 and GWTC-2 catalogs by the LIGO-Virgo Collaboration. By stacking the posterior of individual events, we strengthen the constraint on the square root of the coupling parameter in Einstein-dilaton-Gauss-Bonnet gravity to √αEdGB<1.7 km, but we are unable to place meaningful constraints on dynamical Chern-Simons gravity. Importantly, we also show that our bounds are robust to (i) the choice of general-relativity base waveform model, upon which we add modifications, (ii) unknown higher post-Newtonian order terms in the modifications to general relativity, (iii) the small-coupling approximation, and (iv) uncertainties on the nature of the constituent compact objects.Item Improved next-to-leading order tidal heating and torquing of a Kerr black hole(2016-10) Chatziioannou, Katerina; Poisson, Eric; Yunes, NicolásWe calculate the energy and angular-momentum fluxes across the event horizon of a tidally deformed, rapidly rotating black hole to next-to-leading order in the curvature of the external spacetime. These are expressed in terms of tidal quadrupole moments and their time derivatives, which provide a characterization of a generic tidal environment. As an application of our results, we provide an expression for the energy and angular-momentum fluxes across the horizon when the black hole is a member of a binary system on a slowly moving, quasicircular orbit. Our expressions are accurate to 1.5 post-Newtonian order beyond the leading-order fluxes, but they are valid for arbitrary mass ratios. We compare our results to those previously obtained in the case of an extreme mass ratio binary, and find that they do not agree at the 1.5 post-Newtonian order. We investigate a number of possible sources for this discrepancy, but are ultimately unable to resolve it.Item Probing the internal composition of neutron stars with gravitational waves(2015-11) Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil J.; Yunes, NicolásGravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to constrain their existence with an 11 to 1 confidence for high-mass systems. We, finally, find that combining multiple lower signal-to-noise ratio detections (stacking) must be handled with caution since it could fail in cases where the prior information dominates over new information from the data.Item Projected Constraints on Lorentz-Violating Gravity with Gravitational Waves(2015-04) Hansen, Devin; Yunes, Nicolás; Yagi, KentGravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. We here study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-\AE{}ther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from General Relativity and in the small-velocity/weak-gravity approximation. We assume a gravitational wave consistent with General Relativity has been detected with second- and third-generation, ground-based detectors, and with the proposed space-based mission, DECIGO, with and without coincident electromagnetic counterparts. Without a counterpart, a detection consistent with General Relativity of neutron star binaries can only place competitive constraints on gravitational Lorentz violation when using future, third-generation or space-based instruments. On the other hand, a single counterpart is enough to place constraints that are 10 orders of magnitude more stringent than current binary pulsar bounds, even when using second-generation detectors. This is because Lorentz violation forces the group velocity of gravitational waves to be different from that of light, and this difference can be very accurately constrained with coincident observations.Item Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field(2017-09) Anderson, David; Yunes, NicolásScalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein\'s theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.