Scholarly Work - Electrical & Computer Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8814

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Toward polarization-enhanced water quality remote sensing measurements from UAVs
    (SPIE, 2024-05) Morgan, P. Flint; Weller, Wyatt W.; Maxwell, Dylan J.; Hamp, Shannon M.; Venkatesulu, Erica; Shaw, Joseph A.; Whitaker, Bradley M.; Roddewig, Michael R.
    Montana and similar regions contain numerous rivers and lakes that are too small to be spatially resolved by satellites that provide water quality estimates. Unoccupied Aerial Vehicles (UAVs) can be used to obtain such data with much higher spatial and temporal resolution. Water properties are traditionally retrieved from passively measured spectral radiance, but polarization has been shown to improve retrievals of the attenuation-to-absorption ratio to enable calculation of the scattering coefficient for in-water particulate matter. This feeds into improved retrievals of other parameters such as the bulk refractive index and particle size distribution. This presentation will describe experiments conducted to develop a data set for water remote sensing using combined UAV-based hyperspectral and polarization cameras supplemented with in-situ sampling at Flathead Lake in northwestern Montana and the results of preliminary data analysis. A symbolic regression model was used to derive two equations: one relating DoLP, AoP, and the linear Stokes parameters at wavelengths of 440 nm, 550 nm and 660 nm, to chlorophyll-a content, and one relating the same data to the attenuation-to-absorption ratio for 440 nm, 550 nm and 660 nm. Symbolic regression is a machine learning algorithm where the inputs are vectors and the output is an analytic expression, typically chosen by a genetic algorithm. An advantage of this approach is that the explainability of a simple equation can be combined with the accuracy of less explainable models, such as the genetic algorithm.
  • Thumbnail Image
    Item
    Benthic river algae mapping using hyperspectral imagery from unoccupied aerial vehicles
    (SPIE-Intl Soc Optical Eng, 2024-06) Logan, Riley D.; Shaw, Joseph A.
    The increasing prevalence of nuisance benthic algal blooms in freshwater systems has led to water quality monitoring programs based on the presence and abundance of algae. Large blooms of the nuisance filamentous algae, Cladophora glomerata, have become common in the waters of the Upper Clark Fork River in western Montana. To aid in the understanding of algal growth dynamics, unoccupied aerial vehicle (UAV)-based hyperspectral images were gathered at three field sites along the length of the river throughout the growing season of 2021. Select regions within images covering the spectral range of 400 to 850 nm were labeled based on a combination of professional judgment and spectral profiles and used to train a random forest classifier to identify benthic algal growth across several classes, including benthic growth dominated by Cladophora (Clado), benthic growth dominated by growth forms other than Cladophora (non-Clado), and areas below a visually detectable threshold of benthic growth (bare substrate). After classification, images were stitched together to produce spatial distribution maps of each river reach while also calculating the average percent cover for each reach, achieving an accuracy of approximately 99% relative to manually labeled images. Results of this analysis showed strong variability across each reach, both temporally (up to 40%) and spatially (up to 46%), indicating that UAV-based imaging with high-spatial resolution could augment and therefore improve traditional measurement techniques that are spatially limited, such as spot sampling.
  • Thumbnail Image
    Item
    Comparison of Supervised Learning and Changepoint Detection for Insect Detection in Lidar Data
    (MDPI AG, 2023-12) Vannoy, Trevor C.; Sweeney, Nathaniel B.; Shaw, Joseph A.; Whitaker, Bradley M.
    Concerns about decreases in insect population and biodiversity, in addition to the need for monitoring insects in agriculture and disease control, have led to an increased need for automated, non-invasive monitoring techniques. To this end, entomological lidar systems have been developed and successfully used for detecting and classifying insects. However, the data produced by these lidar systems create several problems from a data analysis standpoint: the data can contain millions of observations, very few observations contain insects, and the background environment is non-stationary. This study compares the insect-detection performance of various supervised machine learning and unsupervised changepoint detection algorithms and provides commentary on the relative strengths of each method. We found that the supervised methods generally perform better than the changepoint detection methods, at the cost of needing labeled data. The supervised learning method with the highest Matthew’s Correlation Coefficient score on the testing set correctly identified 99.5% of the insect-containing images and 83.7% of the non-insect images; similarly, the best changepoint detection method correctly identified 83.2% of the insect-containing images and 84.2% of the non-insect images. Our results show that both types of methods can reduce the need for manual data analysis.
  • Thumbnail Image
    Item
    Agile collaboration: Citizen science as a transdisciplinary approach to heliophysics
    (Frontiers Media SA, 2023-04) Ledvina, Vincent; Brandt, Laura; MacDonald, Elizabeth; Frissell, Nathaniel; Anderson, Justin; Chen, Thomas Y.; French, Ryan J.; Mare, Francesca Di; Grover, Andrea; Sigsbee, Kristine; Gallardo-Lacourt, Bea; Lach, Donna; Shaw, Joseph A.; Hunnekuhl, Michael; Kosar, Burcu; Barkhouse, Wayne; Young, Tim; Kedhambadi, Chandresh; Ozturk, Dogacan S.; Claudepierre, Seth G.; Dong, Chuanfei; Witteman, Andy; Kuzub, Jeremy; Sinha, Gunjan
    Citizen science connects scientists with the public to enable discovery, engaging broad audiences across the world. There are many attributes that make citizen science an asset to the field of heliophysics, including agile collaboration. Agility is the extent to which a person, group of people, technology, or project can work efficiently, pivot, and adapt to adversity. Citizen scientists are agile; they are adaptable and responsive. Citizen science projects and their underlying technology platforms are also agile in the software development sense, by utilizing beta testing and short timeframes to pivot in response to community needs. As they capture scientifically valuable data, citizen scientists can bring expertise from other fields to scientific teams. The impact of citizen science projects and communities means citizen scientists are a bridge between scientists and the public, facilitating the exchange of information. These attributes of citizen scientists form the framework of agile collaboration. In this paper, we contextualize agile collaboration primarily for aurora chasers, a group of citizen scientists actively engaged in projects and independent data gathering. Nevertheless, these insights scale across other domains and projects. Citizen science is an emerging yet proven way of enhancing the current research landscape. To tackle the next-generation’s biggest research problems, agile collaboration with citizen scientists will become necessary.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.