Scholarly Work - Electrical & Computer Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8814

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Radiometry and the Friis transmission equation
    (American Association of Physics Teachers, 2013) Shaw, Joseph
    To more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction. This approach places more emphasis on the physics and conceptual understanding of the Friis equation than is provided by the traditional derivation based on antenna impedance. Specifically, it shows that the wavelength-squared dependence can be attributed to diffraction at the antenna aperture and illustrates the important difference between the throughput (product of area and solid angle) of a single antenna or telescope and the throughput of a transmitter-receiver pair.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.