Scholarly Work - Center for Biofilm Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Eight genome sequences of bacterial, environmental isolates from Canada Glacier, Antarctica
    (American Society for Microbiology, 2024-08) Smith, Heidi J.; Dieser, Markus; Foreman, Chrstine M.
    Sediments in cryoconite holes and meltwater streams in the McMurdo Dry Valleys, Antarctica, provide both substrates and conditions that support life in an arid polar desert. Here, we report the genomic sequences of eight environmental, bacterial isolates from Canada Glacier cryoconite holes and stream. These isolates span three major phyla.
  • Thumbnail Image
    Item
    Clothing Textiles as Carriers of Biological Ice Nucleation Active Particles
    (American Chemical Society, 2024-03) Teska, Christy J.; Dieser, Markus; Foreman, Christine M.
    Microplastics have littered the globe, with synthetic fibers being the largest source of atmospheric microplastics. Many atmospheric particles can act as ice nucleators, thereby affecting the microphysical and radiative properties of clouds and, hence, the radiative balance of the Earth. The present study focused on the ice-nucleating ability of fibers from clothing textiles (CTs), which are commonly shed from the normal wear of apparel items. Results from immersion ice nucleation experiments showed that CTs were effective ice nucleators active from −6 to −12 °C, similar to common biological ice nucleators. However, subsequent lysozyme and hydrogen peroxide digestion stripped the ice nucleation properties of CTs, indicating that ice nucleation was biological in origin. Microscopy confirmed the presence of biofilms (i.e., microbial cells attached to a surface and enclosed in an extracellular polysaccharide matrix) on CTs. If present in sufficient quantities in the atmosphere, biological particles (biofilms) attached to fibrous materials could contribute significantly to atmospheric ice nucleation.
  • Thumbnail Image
    Item
    Seven genome sequences of bacterial, environmental isolates from Pony Lake, Antarctica
    (American Society for Microbiology, 2023-12) Foreman, Christine M.; Smith, Heidi J.; Dieser, Markus
    Dissolved organic matter (DOM) in Antarctic inland waters is unique in that its precursor molecules are microbially derived and lack the chemical signature of higher plants. Here, we report the genomic sequences of seven environmental, bacterial isolates from Pony Lake, Antarctica, to explore the genetic potential linked to DOM processing.
  • Thumbnail Image
    Item
    Detection of Microbes in Ice Using Microfabricated Impedance Spectroscopy Sensors
    (The Electrochemical Society, 2023-12) Kaiser-Jackson, Lauren B.; Dieser, Markus; McGlennen, Matthew; Parker, Albert E.; Foreman, Christine M.; Warnat, Stephan
    During the growth of a polycrystalline ice lattice, microorganisms partition into veins, forming an ice vein network highly concentrated in salts and microbial cells. We used microfabricated electrochemical impedance spectroscopy (EIS) sensors to determine the effect of microorganisms on the electrochemical properties of ice. Solutions analyzed consisted of a 176 μS cm−1 conductivity solution, fluorescent beads, and Escherichia coli HB101-GFP to model biotic organisms. Impedance spectroscopy data were collected at −10 °C, −20 °C, and −25 °C within either ice veins or ice grains (i.e., no veins) spanning the sensors. After freezing, the fluorescent beads and E. coli were partitioned into the ice veins. The corresponding impedance data were discernibly different in the presence of ice veins and microbial impurities. The presence of microbial cells in ice veins was evident by decreased electrical characteristics (electrode polarization between electrode and ice matrix) relative to solid ice grains. Further, this electrochemical behavior was reversed in all bead-doped solutions, indicating that microbial processes influence sensor response. Linear mixed-effects models empirically corroborated the differences in polarization associated with the presence and absence of microbial cells in ice. We show that EIS has the potential to detect microbes in ice and differentiate between veins and solid grains.
  • Thumbnail Image
    Item
    Monitoring biofilm growth and dispersal in real-time with impedance biosensors
    (Oxford University Press, 2023-02) McGlennen, Matthew; Dieser, Markus; Foreman, Christine M; Warnat, Stephan
    Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil–water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22–25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings.
  • Thumbnail Image
    Item
    Investigation of Raman Spectroscopic Signatures with Multivariate Statistics: An Approach for Cataloguing Microbial Biosignatures
    (Mary Ann Liebert Inc, 2021-09) Messmer, Mitch W.; Dieser, Markus; Smith, Heidi J.; Parker, Albert E.; Foreman, Christine M.
    Spectroscopic instruments are increasingly being implemented in the search for extraterrestrial life. However, microstructural spectral analyses of alien environments could prove difficult without knowledge on the molecular identification of individual spectral signatures. To bridge this gap, we introduce unsupervised K-means clustering as a statistical approach to discern spectral patterns of biosignatures without prior knowledge of spectral regions of biomolecules. Spectral profiles of bacterial isolates from analogous polar ice sheets were measured with Raman spectroscopy. Raman analysis identified carotenoid and violacein pigments, and key cellular features including saturated and unsaturated fats, triacylglycerols, and proteins. Principal component analysis and targeted spectra integration biplot analysis revealed that the clustering of bacterial isolates was attributed to spectral biosignatures influenced by carotenoid pigments and ratio of unsaturated/saturated fat peaks. Unsupervised K-means clustering highlighted the prevalence of the corresponding spectral peaks, while subsequent supervised permutational multivariate analysis of variance provided statistical validation for spectral differences associated with the identified cellular features. Establishing a validated catalog of spectral signatures of analogous biotic and abiotic materials, in combination with targeted supervised tools, could prove effective at identifying extant biosignatures.
  • Thumbnail Image
    Item
    Low-Temperature Biosurfactants from Polar Microbes
    (MDPI AG, 2020-08) Trudgeon, Benjamin; Dieser, Markus; Balasubramanian, Narayanaganesh; Messmer, Mitch; Foreman, Christine M.
    Surfactants, both synthetic and natural, are used in a wide range of industrial applications, including the degradation of petroleum hydrocarbons. Organisms from extreme environments are well-adapted to the harsh conditions and represent an exciting avenue of discovery of naturally occurring biosurfactants, yet microorganisms fromcold environments have been largely overlooked for their biotechnological potential as biosurfactant producers. In this study, four cold-adapted bacterial isolates from Antarctica are investigated for their ability to produce biosurfactants. Here we report on the physical properties and chemical structure of biosurfactants from the genera Janthinobacterium, Psychrobacter, and Serratia. These organisms were able to grow on diesel, motor oil, and crude oil at 4  C. Putative identification showed the presence of sophorolipids and rhamnolipids. Emulsion index test (E24) activity ranged from 36.4–66.7%. Oil displacement tests were comparable to 0.1–1.0% sodium dodecyl sulfate (SDS) solutions. Data presented herein are the first report of organisms of the genus Janthinobacterium to produce biosurfactants and their metabolic capabilities to degrade diverse petroleum hydrocarbons. The organisms’ ability to produce biosurfactants and grow on different hydrocarbons as their sole carbon and energy source at low temperatures (4  C) makes them suitable candidates for the exploration of hydrocarbon bioremediation in low-temperature environments.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.