Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
5 results
Search Results
Item Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite(2012-07) Mitchell, Isaac; Peterson, L.; Reardon, Catherine L.; Reed, S. B.; Culley, D. E.; Romine, Margaret F.; Geesey, Gill G.The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to and transfer electrons to hematite has led to the suggestion that they function as terminal reductases when this mineral is used as a respiratory substrate. Differences in their redox behavior and hematite-binding properties, however, indicate that they play different roles in the electron transfer reaction. Here, we investigated how these differences in cytochrome behavior with respect to hematite affected biofilm development when the mineral served as terminal electron acceptor (TEA). Upon attachment to hematite, cells of the wild-type (WT) strain as well as those of a ΔomcA mutant but not those of a ΔmtrC mutant replicated and accumulated on the mineral surface. The results indicate that MtrC but not OmcA is required for growth when this mineral serves as TEA. While an OmcA deficiency did not impede cell replication and accumulation on hematite prior to achievement of a maximum surface cell density comparable to that established by WT cells, OmcA was required for efficient electron transfer and cell attachment to hematite once maximum surface cell density was achieved. OmcA may therefore play a role in overcoming barriers to electron transfer and cell attachment to hematite imposed by reductive dissolution of themineral surface from cell respiration associated with achievement of high surface cell densities.Item The characterization of CaCo3 in a geothermal environment: A SEM/TEM-EELS study(2012-10) Kim, Jin-Wook; Kogure, Toshihiro; Yang, Kiho; Kim, Sang-Tae; Jang, Young-Nam; Baik, Hion-Suck; Geesey, Gill G.Mineralization of microbial biomass is a common phenomenon in geothermal habitats, but knowledge of the structure of the minerals formed in these environments is limited. A combination of spectroscopic, microscopic, and stable isotopic methods, as well as the chemical analysis of spring water, were employed in the present study to characterize calcium carbonate minerals deposited in filamentous cyanobacterial mats in different locations of La Duke hot spring, a circumneutral thermal feature near the north entrance of Yellowstone National Park, Montana, USA. Calcite was the primary crystalline mineral phase associated with biofilm-containing deposits closest to the source of the spring and the suspended microbial biomass in a pool further from the source. The carbonate minerals at all sites occurred as aggregated granules, ~2 mm in diameter, in close association with the microbial biomass. Only in the deposits closest to the source were the granules organized as laminated structures interspersed with microbial biomass. The calcium carbonate grains contained two distinct regions: a dense monolithic calcite core and a porous dendritic periphery containing organic matter (OM). Electron energy loss spectroscopy (EELS) indicated that the voids were infilled with OM and carbonates. The EELS technique was employed to distinguish the source of carbon in the organic matter and carbonate mixture. The studies of carbon isotope compositions of the calcium carbonates and the saturation indices for calcite in the spring waters suggest that processes (abiotic vs. biotic) controlling the carbonate formation may vary among the sampling sites.Item Microbes in mercury-enriched geothermal springs in western North America(2016-11) Geesey, Gill G.; Barkay, Tamar; King, SueBecause geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction in these geothermal systems, particularly the low pH springs that are dominated by Archaea.Item Hydrogenase activity of mineral-associated and suspended populations of Desulfovibrio desulfuricans Essex 6(2014-02) Reardon, Catherine L.; Magnuson, Timothy S.; Boyd, Eric S.; Leavitt, W. D.; Reed, D. W.; Geesey, Gill G.The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate electron transfer to metals and may contribute to the formation and speciation of ferrous sulfides formed at the cell–mineral interface. In the present study, we compared the whole cell hydrogenase activity of Desulfovibrio desulfuricans strain Essex 6 growing as biofilms on hematite (hematite-associated) or as suspended populations using different metabolic pathways. Hematite-associated cells exhibited significantly greater hydrogenase activity than suspended populations during sulfate respiration but not during pyruvate fermentation. The enhanced activity of the hematite-associated, sulfate-grown cells appears to be dependent on iron availability rather than a general response to surface attachment since the activity of glass-associated cells did not differ from that of suspended populations. Hydrogenase activity of pyruvate-fermenting cells was stimulated by addition of iron as soluble Fe(II)Cl2 and, in the absence of added iron, both sulfate-reducing and pyruvate-fermenting cells displayed similar rates of hydrogenase activity. These data suggest that iron exerts a stronger influence on whole cell hydrogenase activity than either metabolic pathway or mode of growth. The location of hydrogenase to the cell envelope and the enhanced activity at the hematite surface in sulfate-reducing cells may influence the redox conditions that control the species of iron sulfides on the mineral surface.Item Mineral formation during bacterial sulfate reduction in the presence of different electron donors and carbon sources(2016-04) Han, Xiqiu; Schultz, Logan N.; Zhang, Weiyan; Zhu, Jihao; Meng, Fanxu; Geesey, Gill G.Sulfate-reducing bacteria have long been known to promote mineral precipitation. However, the influence of electron donors (energy sources) and carbon sources on the minerals formed during sulfate reduction is less well understood. An investigation was therefore undertaken to determine how these nutrients affect sulfate reduction by the bacterium Desulfovibrio alaskensis G20 in a marine sediment pore water medium. Monohydrocalcite and a small amount of calcite formed during sulfate reduction with formate as the electron donor; Mg-phosphates and calcite precipitated when hydrogen served as the electron donor and when acetate and dissolved inorganic carbon served as carbon sources; and greigite and elemental sulfur were deposited when lactate was used as the electron donor and carbon source. The experimental results were generally consistent with geochemical modeling, suggesting that it may be possible to predict the processes and conditions during formation of these minerals in natural environments.