Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
2 results
Search Results
Item Targeted delivery of a photosensitizer to Aggregatibacter actinomycetemcomitans biofilm(2010-04) Suci, Peter A.; Kang, Sebyung; Gmür, Rudolf; Douglas, Trevor; Young, Mark J.The ability to selectively target specific biofilm species with antimicrobials would enable control over biofilm consortium composition, with medical applications in treatment of infections on mucosal surfaces that are colonized by a mixture of beneficial and pathogenic microorganisms. We functionalized a genetically engineered multimeric protein with both a targeting moiety (biotin) and either a fluorophore or a photosensitizer (SnCe6). Biofilm microcolonies of Aggregatibacter actinomycetemcomitans, a periodontal pathogen, were targeted with the multifunctional dodecamer. Streptavidin was used to couple biotinylated dodecamer to a biotinylated anti-A. actinomycetemcomitans antibody. This modular targeting approach enabled us to increase the loading of photosensitizer onto the cells by a cycle of amplification. Scanning laser confocal microscopy was used to characterize transport of fluorescently tagged dodecamer into the microcolonies and targeting of the cells with biotin-labeled, fluorescently tagged dodecamer. Light-induced activity of the targeted photosensitizer reduced the viability of A. actinomycetemcomitans biofilm, as indicated by membrane permeability to propidium iodide. The functionalized multimeric protein promises to be a useful tool for controlling periodontal biofilm consortia and offers a modular design whereby moieties that target different species can be readily combined with the functionalized protein construct.Item Aggregatibacter actinomycetemcomitans biofilm killing by a targeted ciprofloxacin prodrug(2013-09) Reeves, Benjamin D.; Young, Mark J.; Grieco, Paul A.; Suci, Peter A.A pH-sensitive ciprofloxacin prodrug was synthesized and targeted against biofilms of the periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). The dose required to reduce the viability of a mature biofilm of Aa by ∼80% was in the range of ng cm−2 of colonized area (mean biofilm density 2.33 × 109 cells cm−2). A mathematical model was formulated that predicts the temporal change in the concentration of ciprofloxacin in the Aa biofilm as the drug is released and diffuses into the bulk medium. The predictions of the model were consistent with the extent of killing obtained. The results demonstrate the feasibility of the strategy to induce mortality, and together with the mathematical model, provide the basis for design of targeted antimicrobial prodrugs for the topical treatment of oral infections such as periodontitis. The targeted prodrug approach offers the possibility of optimizing the dose of available antimicrobials in order to kill a chosen pathogen while leaving the commensal microbiota relatively undisturbed.