Scholarly Work - Microbiology & Cell Biology

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3494

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    A Filamentous Bacteriophage Protein Inhibits Type IV Pili To Prevent Superinfection of Pseudomonas aeruginosa
    (American Society for Microbiology, 2022-02) Schmidt, Amelia K.; Fitzpatrick, Alexa D.; Schwartzkopf, Caleb M.; Faith, Dominick R.; Jennings, Laura K.; Coluccio, Alison; Hunt, Devin J.; Michaels, Lia A.; Hargil, Aviv; Chen, Qingquan; Bollyky, Paul L.; Dorward, David W.; Wachter, Jenny; Rosa, Patricia A.; Maxwell, Karen L.; Secor, Patrick R.
    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection.
  • Thumbnail Image
    Item
    Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections
    (Frontiers Media SA, 2020-02) Secor, Patrick R.; Burgener, Elizabeth B.; Kinnersley, M.; Jennings, Laura K.; Roman-Cruz, Valery; Popescu, Medeea; Van Belleghem, Jonas D.; Haddock, Naomi; Copeland, Conner; Michaels, Lia A.; de Vries, Christiaan R.; Chen, Qingquan; Pourtois, Julie; Wheeler, Travis J.; Milla, Carlos E.; Bollyky, Paul L.
    Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
  • Thumbnail Image
    Item
    Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis
    (American Association for the Advancement of Science, 2019-04) Burgener, Elizabeth B.; Sweere, Johanna M.; Bach, Michelle S.; Secor, Patrick R.; Haddock, Naomi; Jennings, Laura K.; Marvig, Rasmus L.; Krogh Johansen, Helle; Rossi, Elio; Cao, Xiou; Tian, Lu; Nedelec, Laurence; Molin, Søren; Bollyky, Paul L.; Milla, Carlos E.
    Filamentous bacteriophage (Pf phage) contribute to the virulence of Pseudomonas aeruginosa infections in animal models, but their relevance to human disease is unclear. We sought to interrogate the prevalence and clinical relevance of Pf phage in patients with cystic fibrosis (CF) using sputum samples from two well-characterized patient cohorts. Bacterial genomic analysis in a Danish longitudinal cohort of 34 patients with CF revealed that 26.5% (n = 9) were consistently Pf phage positive. In the second cohort, a prospective cross-sectional cohort of 58 patients with CF at Stanford, sputum qPCR analysis showed that 36.2% (n = 21) of patients were Pf phage positive. In both cohorts, patients positive for Pf phage were older, and in the Stanford CF cohort, patients positive for Pf phage were more likely to have chronic P. aeruginosa infection and had greater declines in pulmonary function during exacerbations than patients negative for Pf phage presence in the sputum. Last, P. aeruginosa strains carrying Pf phage exhibited increased resistance to antipseudomonal antibiotics. Mechanistically, in vitro analysis showed that Pf phage sequesters these same antibiotics, suggesting that this mechanism may thereby contribute to the selection of antibiotic resistance over time. These data provide evidence that Pf phage may contribute to clinical outcomes in P. aeruginosa infection in CF.
  • Thumbnail Image
    Item
    Filamentous Bacteriophage Produced by Pseudomonas aeruginosa Alters the Inflammatory Response and Promotes Noninvasive InfectionIn Vivo
    (American Society for Microbiology, 2017-01) Secor, Patrick R.; Michaels, Lia A.; Smigiel, Kate S.; Rohani, Maryam G.; Jennings, Laura K.; Hisert, Katherine B.; Arrigoni, Allison; Braun, Kathleen R.; Birkland, Timothy P.; Lai, Ying; Hallstrand, Teal S.; Bollyky, Paul L.; Singh, Pradeep K.; Parks, William C.
    Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.