Scholarly Work - Microbiology & Cell Biology

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3494

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils
    (MDPI AG, 2022-05) Schepetkin, Igor A.; Özek, Gulmira; Özek, Temel; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Klein, Robyn A.; Quinn, Mark T.
    Despite their reported therapeutic properties, not much is known about the immunomodulatory activity of essential oils present in Artemisia species. We isolated essential oils from the flowers and leaves of five Artemisia species: A. tridentata, A. ludoviciana, A. dracunculus, A. frigida, and A. cana. The chemical composition of the Artemisia essential oil samples had similarities and differences as compared to those previously reported in the literature. The main components of essential oils obtained from A. tridentata, A. ludoviciana, A. frigida, and A. cana were camphor (23.0–51.3%), 1,8-cineole (5.7–30.0%), camphene (1.6–7.7%), borneol (2.3–14.6%), artemisiole (1.2–7.5%), terpinen-4-ol (2.0–6.9%), α-pinene (0.8–3.9%), and santolinatriene (0.7–3.5%). Essential oils from A. dracunculus were enriched in methyl chavicol (38.8–42.9%), methyl eugenol (26.1–26.4%), terpinolene (5.5–8.8%), (E/Z)-β-ocimene (7.3–16.0%), β-phellandrene (1.3–2.2%), p-cymen-8-ol (0.9–2.3%), and xanthoxylin (1.2–2.2%). A comparison across species also demonstrated that some compounds were present in only one Artemisia species. Although Artemisia essential oils were weak activators of human neutrophils, they were relatively more potent in inhibiting subsequent neutrophil Ca2+ mobilization with N-formyl peptide receptor 1 (FPR1) agonist fMLF- and FPR2 agonist WKYMVM, with the most potent being essential oils from A. dracunculus. Further analysis of unique compounds found in A. dracunculus showed that farnesene, a compound with a similar hydrocarbon structure as lipoxin A4, inhibited Ca2+ influx induced in human neutrophils by fMLF (IC50 = 1.2 μM), WKYMVM (IC50 = 1.4 μM), or interleukin 8 (IC50 = 2.6 μM). Pretreatment with A. dracunculus essential oils and farnesene also inhibited human neutrophil chemotaxis induced by fMLF, suggesting these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Thus, our studies have identified farnesene as a potential anti-inflammatory modulator of human neutrophils.
  • Thumbnail Image
    Item
    Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species
    (MDPI AG, 2021-12) Özek, Gulmira; Schepetkin, Igor A.; Yermagambetova, Moldir; Özek, Temel; Kirpotina, Liliya N.; Almerekova, Shyryn S.; Abugalieva, Saule I.; Khlebnikov, Andrei I.; Quinn, Mark T.
    Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.
  • Thumbnail Image
    Item
    Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11H-Indeno[1,2-b]quinoxalin-11-one Scaffold
    (MDPI AG, 2021-09) Liakhov, Serhii A.; Schepetkin, Igor A.; Karpenko, Olexander S.; Duma, Hanna I.; Haidarzhy, Nadiia M.; Kirpotina, Liliya N.; Kovrizhina, Anastasia R.; Khlebnikov, Andrei I.; Bagryanskaya, Irina Y.; Quinn, Mark T.
    c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.
  • Thumbnail Image
    Item
    Therapeutic Effect of Novel Cyanopyrrolidine-Based Prolyl Oligopeptidase Inhibitors in Rat Models of Amnesia
    (Frontiers Media SA, 2021-12) Zolotov, Nikolay N.; Schepetkin, Igor A.; Voronina, Tatyana A.; Pozdnev, Vladimir F.; Khlebnikov, Andrei I.; Krylova, Irina V.; Quinn, Mark T.
    Prolyl oligopeptidase (POP) is a large cytosolic serine peptidase that is altered in patients with Alzheimer’s disease, Parkinsonian syndrome, muscular dystrophies, and other denervating diseases. Thus, POP may represent a relevant therapeutic target for treatment of neuropsychiatric disorders and neurodegenerative diseases. Here, we report the characterization of five novel cyanopyrrolidine-based compounds (BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, CbzGlnPrdN, and CbzAlaPrdN) and show that they are potent inhibitors of POP and are predicted to penetrate the blood-brain barrier (BBB). Indeed, we show that CbzMetPrdN penetrates the rat BBB and effectively inhibits POP in the brain when administered intraperitoneally. Furthermore, molecular modeling confirmed these compounds likely inhibit POP via interaction with the POP catalytic site. We evaluated protective effects of the cyanopyrrolidine-based POP inhibitors using scopolamine- and maximal electroshock-induced models of amnesia in rats and showed that BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, and CbzGlnPrdN significantly prolonged conditioned passive avoidance reflex (CPAR) retention time when administered intraperitoneally (1 and 2 mg/kg) before evaluation in both models of amnesia, although CbzAlaPrdN was not effective in scopolamine-induced amnesia. Our data support previous reports on the antiamnesic effects of prolinal-based POP inhibitors and indicate an important role of POP in the regulation of learning and memory processes in the CNS.
  • Thumbnail Image
    Item
    Pyridinone Derivatives as Interesting Formyl Peptide Receptor (FPR) Agonists for the Treatment of Rheumatoid Arthritis
    (MDPI AG, 2021-10) Crocetti, Letizia; Vergelli, Claudia; Guerrini, Gabriella; Paola Giovannoni, Maria; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Ghelardini, Carla; Di Cesare Mannelli, Di Cesare Mannelli; Lucarini, Elena; Schepetkin, Igor A.; Quinn, Mark T.
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, cartilage damage and bone destruction. Although the pharmacological treatment of RA has evolved over the last few years, the new drugs have serious side effects and are very expensive. Thus, the research has been directed in recent years towards new possible targets. Among these targets, N-formyl peptide receptors (FPRs) are of particular interest. Recently, the mixed FPR1/FPR2 agonist Cpd43, the FPR2 agonist AT-01-KG, and the pyridine derivative AMC3 have been shown to be effective in RA animal models. As an extension of this research, we report here a new series of pyridinone derivatives containing the (substituted)phenyl acetamide chain, which was found to be essential for activity, but with different substitutions at position 5 of the scaffold. The biological results were also supported by molecular modeling studies and additional pharmacological tests on AMC3 have been performed in a rat model of RA, by repeating the treatments of the animals with 10 mg/kg/day of compound by 1 week.
  • Thumbnail Image
    Item
    Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers
    (MDPI AG, 2021-04) Basok, Stepan S.; Schepetkin, Igor A.; Khlebnikov, Andrei I.; Lutsyuk, Anatoliy F.; Kirichenko, Tatiana I.; Kirpotina, Liliya N.; Pavlovsky, Victor I.; Leonov, Klim A.; Vishenkova, Darya A.; Quinn, Mark T.
    Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 10–17, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N’-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 10–17, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N’-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.
  • Thumbnail Image
    Item
    Exploration of nitrogen heterocycle scaffolds for the development of potent human neutrophil elastase inhibitors
    (Elsevier BV, 2021-01) Cantini, Niccolò; Khlebnikov, Andrei I.; Crocetti, Letizia; Schepetkin, Igor A; Floresta, Giuseppe; Guerrini, Gabriella; Vergelli, Claudia; Bartolucci, Gianluca; Quinn, Mark T.; Giovannoni, Maria Paola
    Human neutrophil elastase (HNE) is a potent protease that plays an important physiological role in many processes but is also involved in a variety of pathologies that affect the pulmonary system. Thus, compounds able to inhibit HNE proteolytic activity could represent effective therapeutics. We present here a new series of pyrazolopyridine and pyrrolopyridine derivatives as HNE inhibitors designed as modifications of our previously synthesized indazoles and indoles in order to evaluate effects of the change in position of the nitrogen and/or the insertion of an additional nitrogen in the scaffolds on biological activity and chemical stability. We obtained potent HNE inhibitors with IC50 values in the low nanomolar range (10–50 nM), and some compounds exhibited improved chemical stability in phosphate buffer (t1/2 > 6 h). Molecular modeling studies demonstrated that inhibitory activity was strictly dependent on the formation of a Michaelis complex between the OH group of HNE Ser195 and the carbonyl carbon of the inhibitor. Moreover, in silico ADMET calculations predicted that most of the new compounds would be optimally absorbed, distributed, metabolized, and excreted. Thus, these new and potent HNE inhibitors represent novel leads for future therapeutic development.
  • Thumbnail Image
    Item
    Synthesis, biological evaluation, molecular modeling, and structural analysis of new pyrazole and pyrazolone derivatives as N-formyl peptide receptors agonists
    (Wiley, 2021-06) Vergelli, Claudia; Khlebnikov, Andrei I.; Crocetti, Letizia; Guerrini, Gabriella; Cantini, Niccolò; Kirpotina, Liliya N.; Schepetkin, Igor A.; Cilibrizzi, Agostino; Quinn, Mark T.; Rossi, Patrizia; Paoli, Paola; Giovannoni, Maria Paola
    N- formyl peptide receptors (FPR1, FPR2, and FPR3) play key roles in the regulation of inflammatory processes, and recently, it was demonstrated that FPR1 and FPR2 have a dual role in the progression/suppression of some cancers. Therefore, FPRs represent an important therapeutic target for the treatment of both cancer and inflammatory diseases. Previously, we identified selective or mixed FPR agonists with pyridazinone or pyridinone scaffolds showing a common 4-(bromophenyl)acetamide fragment, which was essential for activity. We report here new pyrazole and pyrazolone derivatives as restricted analogues of the above 6-membered compounds, all exhibiting the same 4-bromophenylacetamide side chain. Most new products had low or absent FPR agonist activity, suggesting that the pyrazole nucleus was not appropriate for FPR agonists. This hypothesis was confirmed by molecular modeling studies, which highlighted that the five-membered scaffold was responsible for a worse arrangement of the molecules in the receptor binding site.
  • Thumbnail Image
    Item
    Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential
    (MDPI AG, 2021-05) Schepetkin, Igor A; Plotnikov, Mark B.; Khlebnikov, Andrei I.; Plotnikova, Tatiana M.; Quinn, Mark T.
    Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.