Scholarly Work - Microbiology & Cell Biology

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3494

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Arsenate-Induced Changes in Bacterial Metabolite and Lipid Pools during Phosphate Stress
    (American Society for Microbiology, 2021-02) Zhuang, Weiping; Balasubramanian, Narayanaganesh; Wang, Lu; Wang, Qian; McDermott, Timothy R.; Copie, Valerie; Wang, Gejiao; Bothner, Brian
    Arsenic is widespread in the environment and is one of the most ubiquitous environmental pollutants. Parodoxically, the growth of certain bacteria is enhanced by arsenic when phosphate is limited.
  • Thumbnail Image
    Item
    Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in Agrobacterium tumefaciens 5A
    (MDPI, 2020-09) Rawle, Rachel A.; Tokmina-Lukaszewska, Monika; Shi, Zunji; Kang, Yoon-Suk; Tripet, Brian P.; Dang, Fang; Wang, Gejiao; McDermott, Timothy R.; Copie, Valerie; Bothner, Brian
    Arsenite (AsIII) oxidation is a microbially-catalyzed transformation that directly impacts arsenic toxicity, bioaccumulation, and bioavailability in environmental systems. The genes for AsIII oxidation (aio) encode a periplasmic AsIII sensor AioX, transmembrane histidine kinase AioS, and cognate regulatory partner AioR, which control expression of the AsIII oxidase AioBA. The aio genes are under ultimate control of the phosphate stress response via histidine kinase PhoR. To better understand the cell-wide impacts exerted by these key histidine kinases, we employed 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-coupled mass spectrometry (LC-MS) metabolomics to characterize the metabolic profiles of ΔphoR and ΔaioS mutants of Agrobacterium tumefaciens 5A during AsIII oxidation. The data reveals a smaller group of metabolites impacted by the ΔaioS mutation, including hypoxanthine and various maltose derivatives, while a larger impact is observed for the ΔphoR mutation, influencing betaine, glutamate, and different sugars. The metabolomics data were integrated with previously published transcriptomics analyses to detail pathways perturbed during AsIII oxidation and those modulated by PhoR and/or AioS. The results highlight considerable disruptions in central carbon metabolism in the ΔphoR mutant. These data provide a detailed map of the metabolic impacts of AsIII, PhoR, and/or AioS, and inform current paradigms concerning arsenic–microbe interactions and nutrient cycling in contaminated environments.
  • Thumbnail Image
    Item
    Roadmap for naming uncultivated Archaea and Bacteria
    (2020-08) Murray, Alison E.; Freudenstein, John; Gribaldo, Simonetta; Hatzenpichler, Roland; Hugenholtz, Philip; Kampfer, Peter; Konstantinidis, Konstantinos T.; Lane, Christopher E.; Papke, R. Thane; Parks, Donovan H.; Rossello-Mora, Ramon; Stott, Matthew B.; Sutcliffe, Iain C.; Thrash, J. Cameron; Venter, Stephanus N.; Whitman, William B.; Acinas, Silvia G.; Amann, Rudolf I.; Anantharaman, Karthik; Armengaud, Jean; Baker, Brett J.; Barco, Roman A.; Bode, Helge B.; Boyd, Eric S.; Brady, Carrie L.; Carini, Paul; Chain, Patrick S. G.; Colman, Daniel R.; DeAngelis, Kristen M.; Asuncion de los Rios, Maria; Estrada-de los Santos, Paulina; Dunlap, Christopher A.; Eisen, Jonathan A.; Emerson, David; Ettema, Thisjs J. G.; Eveillard, Damien R.; Girguis, Peter R.; Hentschel, Ute; Hollibaugh, James T.; Hug, Laura A.; Inskeep, William P.; Ivanova, Elena P.; Klenk, Hans-Peter; Li, Wen-Jun; Lloyd, Karen G.; Loffler, Frank E.; Makhalanyane, Thulani P.; Moser, Duane P.; Nunoura, Takuro; Palmer, Marike; Parro, Victor; Pedros-Alio, Carlos; Probst, Alexander J.; Smits, Theo H. M.; Steen, Andrew D.; Steenkamp, Emma T.; Spang, Anja; Stewart, Frank J.; Tiedje, James M.; Vandamme, Peter; Wagner, Michael; Wang, Feng-Ping; Yarza, Pablo; Hedlund, Brian P.; Reysenbach, Anna-Louise
    The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as ‘type material’, thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.
  • Thumbnail Image
    Item
    Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function
    (2010-03) Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark J.; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary M.; Geesey, Gill G.; Frazier, Marvin
    The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.
  • Thumbnail Image
    Item
    Draft genome sequence and description of Janthinobacterium sp. strain CG3, a psychrotolerant antarctic Supraglacial stream bacterium
    (2013-11) Smith, Heidi J.; Akiyama, Tatsuya; Foreman, Christine M.; Franklin, Michael J.; Woyke, Tanja; Teshima, H; Davenport, K.; Daligault, H.; Erkkila, T.; Goodwin, L. A.; Gu, W.; Xu, Yan; Chain, P. S.
    Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight into the mechanisms necessary for bacteria to survive in UV-stressed icy environments.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.