Scholarly Work - Western Transportation Institute
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9749
Browse
Item Influence Area at Signalized and Stop-Control Intersections: Operational Analysis(SAGE Publications, 2023-02) Raza, Sajid; Al-Kaisy, Ahmed; Washburn, Scott; Barrios, Jorge; Moreno, Ana Tsui; Schroeder, BastianUnderstanding the influence of intersections on operating conditions along connecting roadway segments is important for the analysis of highway facilities and corridors. This study aims at assessing the influence area at signalized and stop-control intersections along rural corridors. The study used speed as a performance measure in examining the spatial extent of operational effects at intersections. High-fidelity connected vehicle (CV) trajectory data, collected at 11 different sites in Florida, was used in this study. The CV trajectory data consists of individual waypoints that included timestamps and location coordinates along with other attributes. Drivers’ speed profiles while driving through the intersection were established and analyzed to determine the length of upstream and downstream influence areas. Quantile regression models were developed to estimate the 50th, 70th, and 85th percentiles of upstream and downstream influence areas separately for signalized and stop-control intersections. Study results indicate that the upstream influence area is longer for a signalized intersection than for a stop-control intersection for comparable segment running speeds. Further, the downstream influence area is significantly longer than the upstream influence area at signalized intersections, and this was consistent at all study sites. Traffic flow level did not have a significant effect on the upstream or downstream influence area; however, midblock running speed, percent heavy vehicles, and facility type (multilane versus two-lane) were found to significantly affect the upstream and downstream influence areas at signalized intersections.Item Transportation Research Record: Journal of the Transportation Research Board(SAGE Publications, 2023-02) Raza, Sajid; Al-Kaisy, Ahmed; Washburn, Scott; Barrios, Jorge; Tsui Moreno, Ana; Schroeder, BastianUnderstanding the influence of intersections on operating conditions along connecting roadway segments is important for the analysis of highway facilities and corridors. This study aims at assessing the influence area at signalized and stop-control intersections along rural corridors. The study used speed as a performance measure in examining the spatial extent of operational effects at intersections. High-fidelity connected vehicle (CV) trajectory data, collected at 11 different sites in Florida, was used in this study. The CV trajectory data consists of individual waypoints that included timestamps and location coordinates along with other attributes. Drivers’ speed profiles while driving through the intersection were established and analyzed to determine the length of upstream and downstream influence areas. Quantile regression models were developed to estimate the 50th, 70th, and 85th percentiles of upstream and downstream influence areas separately for signalized and stop-control intersections. Study results indicate that the upstream influence area is longer for a signalized intersection than for a stop-control intersection for comparable segment running speeds. Further, the downstream influence area is significantly longer than the upstream influence area at signalized intersections, and this was consistent at all study sites. Traffic flow level did not have a significant effect on the upstream or downstream influence area; however, midblock running speed, percent heavy vehicles, and facility type (multilane versus two-lane) were found to significantly affect the upstream and downstream influence areas at signalized intersections.