Scholarly Work - Research Centers
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9236
Browse
Item Durum wheat yield and protein influenced by nitrogen management and cropping rotation(Informa UK Limited, 2022-04) Chen, Chengci; Zhou, Shuang; Afshar, Reza Keshavarz; Franck, William; Zhou, YiNitrogen (N) is the major input for cereal grain production. N management in durum wheat (Triticum turgidum subsp. durum) is critical for optimizing grain yield, protein concentration, and utilization efficiency of nitrogen fertilizer. A two-year study was conducted in the semi-arid region of the US Northern Great Plains (NGP) to investigate nitrogen input levels and application methods under fallow-durum and pea-durum systems. A durum wheat (cv. Joppa) was planted in the field following fallow or field pea with N input levels of 65 and 135 kg ha−1 and four application methods for each N input level. Results showed that water was the major limiting factor determining grain yield and protein concentration. Grain yield was greater but with similar protein concentration following fallow (1958 kg ha−1, 16.7%) than following field pea (1754 kg ha−1, 16.4%). Increasing N input from 65 kg ha−1 to 135 kg ha−1decreased grain yield from 1933 to 1779 kg ha−1 but improved protein concentration from 16.3 to 16.8%, which resulted in a negative nitrogen use efficiency (NUE). Application method of N did not significantly affect yield and protein, but there was a trend of yield increase via split application of N at the lower rate in a wetter year. The drought in 2017 resulted in lower test weight and harvest index (HI). The HI was lower in the135 kg ha−1 N rate than in the 65 kg ha−1 N rate, especially in the dryer year. Excessive N inputs in a water-limited environment may result in ‘haying-off’.Item Variation in Yield, Starch, and Protein of Dry Pea Grown across Montana(2017-05) Tao, Aifen; Afshar, Reza Keshavarz; Huang, Jinwen; Mohammed, Yesuf Assen; Espe, Matthew; Chen, ChengciPea (Pisum sativum L.) has long been an important component of the human diet, providing an excellent source of protein. In addition to its protein, pea starch, especially resistant starch (RS), has received an extensive attention in food industries in recent years. We evaluated nine pea cultivars varying in cotyledon color, grain weight, maturity group, and phenology planted at five locations with diverse climatic conditions across Montana in 2013 and 2014 to assess genetic and environmental factors affecting their yield, protein, RS, and total starch (TS). Grain yield varied from 982 to 5951 kg ha(-1), RS content ranged from 5 to 53 g kg(-1), and protein from 159 to 251 g kg(-1). Statistical analysis showed that environment was the most important driving factor in grain yield, protein, and TS determination whereas RS content was mainly determined by cultivar. Drought at all phenological stages reduced pea yield and different cultivars tended to respond differently. Yield was positively correlated with protein, implying a potential to select/breed a cultivar with higher yield and protein. Protein was negatively correlated with TS, thus protein-or starch-type cultivars may be bred for different end users. Compared to other cultivars tested, DS Admiral was the most promising one with above average yield, protein, and RS.