Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Contribution of wild foods to diet, food security, and cultural values amidst climate change
    (2019-11) Smith, Erin; Ahmed, Selena; Running Crane, MaryAnn; Eggers, Margaret J.; Pierre, Mike; Flagg, Kenneth A.; Byker Shanks, Carmen
    Wild foods are recognized to contribute to diet and food security through enhancing the availability of local, diverse, and nonmarket food sources. We investigated the contribution of wild foods to diet, food security, and cultural identity in a Native American[1] community in the context of climate change. Structured interviews were conducted with low-income residents of the Flathead Indian Reser­vation[2] in Northwestern Montana who participate in the federal Food Distribution Program on Indian Reservations, also known by participants as ‘Commodities.’ Responses to structured questions were analyzed for frequency, and open-ended responses were coded and analyzed to identify prevalent themes. Our analysis indicated that half of participants were food insecure. Approximately 28% of participants engaged in at least one wild food procurement activity, including hunting, fishing, and harvesting. On average, participants who engaged in one or more wild food procure­ment activities were more food secure than those who did not. Results highlight the multidimen­sional valuation of wild foods by participants including taste, freshness, nutritional quality, being a traditional community practice, and providing a sense of self-sufficiency. Climate change is per­ceived by participants to be adversely impacting wild food systems due to increased variability in seasonality and precipitation and increased inci­dences of wild fire. Findings point to the need for community-based strategies to strengthen wild food knowledge toward enhancing food sover­eignty in Native American communities, in the context of climate change. [1] The term ‘Native American’ was determined to be the preferred term for referencing the Native American community in this study, based on consultation from our community advisory board. [2] The term ‘Flathead Indian Reservation’ was determined to be the preferred term for referencing the location in which this study was held, based on consultation from our community advisory board.
  • Thumbnail Image
    Item
    Applying indigenous CBPR principles to partnership development in health disparities research
    (2011-07) Christopher, S.; Saha, R.; Lachapelle, Paul; Jennings, D.; Colclough, Y.; Cooper, C.; Cummins, C.; Eggers, Margaret J.; FourStar, Kris; Harris, K.; Kuntz, Sandra W.; LaFromboise, V.; LaVeaux, Deb; McDonald, T.; Real Bird, James; Rink, Elizabeth; Webster, C.
    This case study of community and university research partnerships utilizes previously developed principles for conducting research in the context of Native American communities to consider how partners understand and apply the principles in developing community-based participatory research partnerships to reduce health disparities. The 7 partnership projects are coordinated through a National Institutes of Health–funded center and involve a variety of tribal members, including both health care professionals and lay persons and native and nonnative university researchers. This article provides detailed examples of how these principles are applied to the projects and discusses the overarching and interrelated emergent themes of sharing power and building trust.
  • Thumbnail Image
    Item
    Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis Dunes Recreation Area, Las Vegas, NV
    (2016-01) Keil, Deborah E.; Buck, Brenda; Goossens, Dirk; Teng, Yuanxin; Leetham, M.; Murphy, Lacey M.; Pollard, James; Eggers, Margaret J.; McLaurin, Brett; Gerads, Russell; DeWitt, Jamie C.
    Exposure to geogenic particulate matter (PM) comprised of mineral particles has been linked to human health effects. However, very little data exist on health effects associated with geogenic dust exposure in natural settings. Therefore, we characterized particulate matter size, metal chemistry, and health effects of dust collected from the Nellis Dunes Recreation Area (NDRA), a popular off-road vehicle area located near Las Vegas, NV. Adult female B6C3F1 mice were exposed to several concentrations of mineral dust collected from active and vegetated sand dunes in NDRA. Dust samples (median diameter: 4.4 μm) were suspended in phosphate-buffered saline and delivered at concentrations ranging from 0.01 to 100 mg dust/kg body weight by oropharyngeal aspiration. ICP-MS analyses of total dissolution of the dust resulted in aluminum (55,090 μg/g), vanadium (70 μg/g), chromium (33 μg/g), manganese (511 μg/g), iron (21,600 μg/g), cobalt (9.4 μg/g), copper (69 μg/g), zinc (79 μg/g), arsenic (62 μg/g), strontium (620 μg/g), cesium (13 μg/g), lead 25 μg/g) and uranium (4.7 μg/g). Arsenic was present only as As(V). Mice received four exposures, once/week over 28-days to mimic a month of weekend exposures. Descriptive and functional assays to assess immunotoxicity and neurotoxicity were performed 24 h after the final exposure. The primary observation was that 0.1 to 100 mg/kg of this sand dune derived dust dose-responsively reduced antigen-specific IgM antibody responses, suggesting that dust from this area of NDRA may present a potential health risk.
  • Thumbnail Image
    Item
    Potential health risks from uranium in home well water: An investigation by the Apsaalooke (Crow) tribal research group
    (2015-03) Eggers, Margaret J.; Moore-Nall, Anita L.; Doyle, John T.; Lefthand, M. J.; Young, Sara L.; Bends, Ada L.; Crow Environmental Health Steering Committee; Camper, Anne K.
    Exposure to uranium can damage kidneys, increase long term risks of various cancers, and cause developmental and reproductive effects. Historically, home well water in Montana has not been tested for uranium. Data for the Crow Reservation from the United States Geological Survey (USGS) National Uranium Resource Evaluation (NURE) database showed that water from 34 of 189 wells tested had uranium over the Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 30 μg/L for drinking water. Therefore the Crow Water Quality Project included uranium in its tests of home well water. Volunteers had their well water tested and completed a survey about their well water use. More than 2/3 of the 97 wells sampled had detectable uranium; 6.3% exceeded the MCL of 30 μg/L. Wells downgradient from the uranium-bearing formations in the mountains were at highest risk. About half of all Crow families rely on home wells; 80% of these families consume their well water. An explanation of test results; associated health risks and water treatment options were provided to participating homeowners. The project is a community-based participatory research initiative of Little Big Horn College; the Crow Tribe; the Apsaalooke Water and Wastewater Authority; the local Indian Health Service Hospital and other local stakeholders; with support from academic partners at Montana State University (MSU) Bozeman.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.