Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Development of Martian saline seep models and their implications for planetary protection
    (Elsevier BV, 2023-12) Mettler, Madelyn K.; Goemann, Hannah M.; Mueller, Rebecca C.; Vanegas, Oscar A.; Lopez, Gabriela; Singh, Nitin; Venkateswaran, Kasthuri; Peyton, Brent M.
    While life on Mars has not been found, Earth-based microorganisms may contaminate the Red Planet during rover expeditions and human exploration. Due to the survival advantages conferred by the biofilm morphology to microorganisms, such as resistance to UV and osmotic stress, biofilms are particularly concerning from a planetary protection perspective. Modeling and data from the NASA Phoenix mission indicate that temporary liquid water might exist on Mars in the form of high salinity brines. These brines could provide colonization opportunities for terrestrial microorganisms brought by spacecraft or humans. To begin testing for potential establishment of microbes, results are presented from a simplified laboratory model of a Martian saline seep inoculated with sediment from Hailstone Basin, a terrestrial saline seep in Montana (USA). The seep was modeled as a sand-packed drip flow reactor at room temperature fed media with either 1 M MgSO4 or 1 M NaCl. Biofilms were established within the first sampling point of each experiment. Endpoint 16S rRNA gene community analysis showed significant selection of halophilic microorganisms by the media. Additionally, we detected 16S rRNA gene sequences highly similar to microorganisms previously detected in two spacecraft assembly cleanrooms. These experimental models provide an important foundation for identifying microbes that could hitch-hike on spacecraft and may be able to colonize Martian saline seeps. Future model optimization will be vital to informing cleanroom sterilization procedures.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.