Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Antimicrobial Coating Efficacy for Prevention of Pseudomonas aeruginosa Biofilm Growth on ISS Water System Materials
    (Frontiers Media SA, 2022-04) Mettler, Madelyn K.; Parker, Ceth W.; Venkateswaran, Kasthuri; Peyton, Brent M.
    Biofilms can lead to biofouling, microbially induced corrosion, physical impediment and eventual loss in function of water systems, and other engineered systems. The remoteness and closed environment of the International Space Station (ISS) make it vulnerable to unchecked biofilm growth; thus, biofilm mitigation strategies are crucial for current ISS operation and future long duration and deep-space crewed missions. In this study, a space flown bacterial strain of Pseudomonas aeruginosa (PA14) was used as a model organism for its ability to form biofilms. Additionally, a novel antimicrobial coating’s ability to reduce biofilm accumulation on stainless steel, Teflon, titanium, and Inconel (all used in the ISS water treatment and handling systems) was analyzed. Coated materials demonstrated reductions of P. aeruginosa biofilm across all materials when tested in a continuous flow system with tryptic soy broth medium. However, the coating lost efficacy in potato dextrose broth medium. These findings were corroborated via scanning electron microscopy. This study illustrates the fundamental importance of using multiple approaches to test antibiofilm strategies, as well as the specificity in which conditions such strategies can be implemented.
  • Thumbnail Image
    Item
    Validating an Automated Nucleic Acid Extraction Device for Omics in Space Using Whole Cell Microbial Reference Standards
    (2020-08) Urbaniak, Camilla; Wong, Season; Tighe, Scott; Arumugam, Arunkumar; Liu, Bo; Parker, Ceth W.; Wood, Jason M.; Singh, Nitin K.; Skorupa, Dana J.; Peyton, Brent M.; Jenson, Ryan; Karouia, Fathi; Dragon, Julie; Venkateswaran, Kasthuri
    NASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The Omics in Space team has developed the μTitan (simulated micro(μ) gravity tested instrument for automated nucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity. The μTitan system was validated using a whole cell microbial reference (WCMR) standard comprised of a suspension of nine bacterial strains, titrated to concentrations that would challenge the performance of the instrument, as well as to determine the detection limits for isolating DNA. Quantitative assessment of system performance was measured by comparing instrument input challenge dose vs recovery by Qubit spectrofluorometry, qPCR, Bioanalyzer, and Next Generation Sequencing. Overall, results indicate that the μTitan system performs equal to or greater than a similar commercially available, earth-based, automated nucleic acid extraction device. The μTitan system was also tested in Yellowstone National Park (YNP) with the WCMR, to mimic a remote setting, with limited resources. The performance of the device at YNP was comparable to that in a laboratory setting. Such a portable, field-deployable, nucleic extraction system will be valuable for environmental microbiology, as well as in health care diagnostics.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.