Center for Biofilm Engineering (CBE)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334
At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.
Browse
3 results
Search Results
Item The importance of understanding the infectious microenvironment(Elsevier BV, 2022-03) Bjarnsholt, Thomas; Whiteley, Marvin; Rumbaugh, Kendra P.; Stewart, Philip S.; Jensen, Peter Ø.; Frimodt-Møller, NielsStandard doses of antibiotics do not efficiently treat chronic infections of the soft tissue and bone. In this Personal View, we advocate for improving treatment of these infections by taking the infectious microenvironment into account. The infectious microenvironment can cause sensitive bacteria to lose their susceptibility to antibiotics that are effective in standard laboratory susceptibility testing. We propose that bacteria behave substantially different in standard laboratory conditions than they do in actual infections. The infectious microenvironment could impose changes in growth and metabolic activity that result in increased protection against antibiotics. Therefore, we advocate that improved antibiotic treatment of chronic infection is achievable when antibiotics are recommended on the basis of susceptibility testing in relevant in vitro conditions that resemble actual infectious microenvironments. We recommend establishing knowledge of the relevant conditions of the chemical and physical composition of the infectious microenvironment. Recent advances in RNA sequencing, metabolomics, and microscopy have made it possible for the characterisation of the microenvironment of infections and to validate the clinical relevance of in vitro conditions to actual infections.Item Detection of Pseudomonas aeruginosa biomarkers from thermally injured mice in situ using imaging mass spectrometry(2017-12) Hamerly, Timothy; Everett, Jake A.; Paris, Nina; Fisher, Steve T.; Karunamurthy, Arivarasan; James, Garth A.; Rumbaugh, Kendra P.; Rhoads, Daniel D.; Bothner, BrianMonitoring patients with burn wounds for infection is standard practice because failure to rapidly and specifically identify a pathogen can result in poor clinical outcomes, including death. Therefore, a method that facilitates detection and identification of pathogens in situ within minutes of biopsy would be a significant benefit to clinicians. Mass spectrometry is rapidly becoming a standard tool in clinical settings, capable of identifying specific pathogens from complex samples. Imaging mass spectrometry (IMS) expands the information content by enabling spatial resolution of biomarkers in tissue samples as in histology, without the need for specific stains/antibodies. Herein, a murine model of thermal injury was used to study infection of burn tissue by Pseudomonas aeruginosa. This is the first use of IMS to detect P. aeruginosa infection in situ from thermally injured tissue. Multiple molecular features could be spatially resolved to infected or uninfected tissue. This demonstrates the potential use of IMS in a clinical setting to aid doctors in identifying both presence and species of pathogens in tissue.Item Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window(2010-08) Wolcott, Randall D.; Rumbaugh, Kendra P.; James, Garth A.; Schultz, Gregory; Phillips, P.; Yang, Q.; Watters, C.; Stewart, Philip S.; Dowd, Scot E.Objective: To investigate the hypothesis that newly formed wound biofilms (or bioburdens) are more susceptible to antimicrobial treatment.Method: Four separate and distinct models were performed by four separate biofilm research laboratories to evaluate the resistance of biofilms to antimicrobial treatments over time. These included a drip-flow biofilm model along with a hydrodebridement study, a porcine skin punch biopsy ex vivo model, a mouse chronic wound model and clinical longitudinal debridement study.Results: All four models showed that, within the first 24 hours, the biofilm community was more susceptible to the selected antibiotics, and after maturing for up to 48 hours became increasingly tolerant. In each model, there was at least a 24-hour period in which the biofilms were more resistant to antibiotics. Each of the models utilised showed a significant decrease in the resistance of the biofilm/ burden to gentamicin for up to 24 hours with a confidence interval of at least 95%. The resistance increased in each of the models by 48 hours and reached original resistance levels by 72 hours.Conclusion: These data suggest the principles of biofilm-based wound care, along with the use of serial debridement to continually remove mature biofilm, followed by biofilm wound management strategies, including topical antibiotics while the bioburden is still immature and more susceptible, are valid.Conflict of interest: SED is director of Research and Testing Laboratory, a commercial laboratory that develops molecular methods for diagnosis of wounds and infections and CEO of Pathogenius Laboratories, which is a molecular pathogen diagnostic company with a focus on chronic wounds. RDW is medical director of Southwest Regional Wound Care Center and inventor of biofilm-based wound care principles.