Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Sulfide product inhibition of desulfovibrio desulfuricans in batch and continuous cultures
    (1995-02) Okabe, Satoshi; Nielsen, P. H.; Jones, Warren L.; Characklis, William G.
    Sulfide product inhibition kinetics for growth and activity of Desulfovibrio desulfuricans was investigated in batch and continuous cultures at pH = 7.0. A non-competitive inhibition model adequately described sulfide product inhibition kinetics. Inhibition coefficient (Ki) for maximum specific growth rate (μinhmax) was 251 mg l−1 S in a batch experiment. Cell yield determined in a chemostat was reduced in half by a sulfide concentration of about 250 mg l−1 S, which was very close to the Ki value for the batch growth. Maximum specific growth rate (μinhmax) and cell yield (YcLac) were strongly inhibited by high levels of sulfide concentrations, whereas specific lactate utilization rate increased with increasing sulfide concentrations. The results indicated an increase in the relative energy needed for maintenance to overcome sulfide inhibition and uncoupling growth from energy production. However, D. desulfuricans to some extent could recover from the shock of high sulfide concentrations. Stoichiometry for catabolic reactions (energy producing) did not change at high sulfide concentrations, while anabolic reactions (cellular synthesis) were strongly inhibited by high sulfide concentrations. These results suggested that separation of sulfide product inhibition into growth (cell yield) and activity (substrate utilization rate) was important to incorporate the sulfide product inhibition kinetics in a variety of applications.
  • Thumbnail Image
    Item
    Kinetic analysis of microbial sulfate reduction by desulfovibrio desulfuricans in an anaerobic upflow porous media biofilm reactor
    (1994-02) Chen, Ching-I; Mueller, Robert Franz; Griebe, Thomas
    An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H2S) in oil field porous media. The reactor was a packed bed (50 × 5.5 cm) tubular reactor. Sea sand (140 to 375 μm) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent. Analysis of the pseudo–steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system.
  • Thumbnail Image
    Item
    Modeling urban runoff from a planned community
    (1976-04) Diniz, E. V.; Holloway, David; Characklis, William G.
  • Thumbnail Image
    Item
    Enhanced mobility of pb in the presence of dissolved natural organic matter
    (1997-12) Jordan, Ryan N.; Yonge, David R.; Hathhorn, Wade E.
    The speciation of Pb in batch experiments and its mobility under flowing conditions in column transport experiments were investigated to study Pb behavior in a soil-water system in the presence of dissolved natural organic matter (DOM), peat humic acid (PHA) and peat fulvic acid (PFA). A sandy soil having a significant intraparticle porosity was used as the sorbing media. Batch equilibrium sorption isotherms for single components (Pb, PHA, and PFA) and for Pb in the presence of PHA and PFA were generated. Batch equilibrium experiments were also performed for both PHA and PFA to investigate Pb-DOM binding in the absence of soil. Single component (Pb, PHA, and PFA) and multicomponent (Pb-PHA and Pb-PFA) laboratory-scale column transport experiments were conducted to assess transport behavior of Pb in the presence of DOM. Sorption isotherms indicated that the soil had a higher affinity for PHA than for PFA. However, single component column transport experiments showed that PHA was less retarded than PFA. This anomaly was attributed to the size exclusion of the larger PHA molecules from the intraparticle porosity of the media under the geochemical conditions in the column. Pb retardation predicted by equilibrium equations based upon nonlinear isotherm parameterization agreed well with observed retardation. However, equilibrium retardation equations overpredicted retardation of DOM, indicating sorption kinetic limitations (chemical and/or physical nonequilibrium), molecular size exclusion during column transport, or chemical heterogeneity of the DOM. In multicomponent column transport experiments, Pb retardation decreased by factors of 4–8 in the presence of DOM. Multicomponent batch equilibrium experiments suggested that Pb mobility was governed by speciation of Pb with soluble DOM during transport. Thus, Pb eluted earlier in the presence of PHA than in the presence of PFA because PHA had a higher affinity for Pb binding than PFA.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.