Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 10 of 177
  • Thumbnail Image
    Item
    Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria
    (2019-10) Walsh, Danica J.; Livinghouse, Tom; Goeres, Darla M.; Mettler, Madelyn; Stewart, Philip S.
    Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
  • Thumbnail Image
    Item
    Dynamic processing of DOM: Insight from exometabolomics, fluorescence spectroscopy, and mass spectrometry
    (2018-06) Smith, Heidi J.; Tigges, Michelle M.; D'Andrilli, Juliana; Parker, Albert E.; Bothner, Brian; Foreman, Christine M.
    Dissolved organic matter (DOM) in freshwater environments is an important source of organic carbon, supporting bacterial respiration. Frozen environments cover vast expanses of our planet, with glaciers and ice-sheets storing upwards of 6 petagrams of organic carbon. It is generally believed that DOM liberated from ice stimulates downstream environments. If true, glacial DOM is an important component of global carbon cycling. However, coupling the release of DOM to microbial activity is challenging due to the molecular complexity of DOM and the metabolic connectivity within microbial communities. Using a single environmentally relevant organism, we demonstrate that processing of compositionally diverse DOM occurs, but, even though glacially derived DOM is chemically labile, it is unable to support sustained respiration. In view of projected changes in glacier DOM export, these findings imply that biogeochemical impacts on downstream environments will depend on the reactivity and heterogeneity of liberated DOM, as well as the timescale.
  • Thumbnail Image
    Item
    Light-Based 3D Printing of Hydrogels with High-Resolution Channels
    (2019-01) Benjamin, Aaron D.; Abbasi, Reha; Owens, Madison; Olsen, Robert J.; Walsh, Danica J.; LeFevre, Thomas B.; Wilking, James N.
    Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite control over material structure. However, the use of these methods for structuring hydrogels is underdeveloped. In particular, the ability to print hydrogel objects containing internal voids and channels is limited by the lack of well-characterized formulations that strongly attenuate light and the lack of a theoretical framework for predicting and mitigating channel occlusion. Here we present a combined experimental and theoretical approach for creating well-defined channels with any orientation in hydrogels using light-based 3D printing. This is achieved by the incorporation of photoblocker and the optimization of print conditions to ensure layer-layer adhesion while minimizing channel occlusion. To demonstrate the value of this approach we print hydrogels containing individual spiral channels with centimeter-scale length and submillimeter-scale cross-section. While the channels presented here are relatively simple, this same approach could be used to achieve more complex channel designs mimicking, for example, the complex vasculature of living organisms. The low cytotoxicity of the gel makes the formulation a promising candidate for biological applications.
  • Thumbnail Image
    Item
    Direct measurement of chlorine penetration into biofilms during disinfection
    (1994-12) de Beer, Dirk; Srinivasan, Rohini; Stewart, Philip S.
  • Thumbnail Image
    Item
    Maximum utilization of water resources within a planned community
    (1975) Characklis, William G.; Gaudet, F. J.
  • Thumbnail Image
    Item
    Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms
    (2006-01) Borriello, Giorgia B.; Richards, Lee A.; Ehrlich, Garth D.; Stewart, Philip S.
    Arginine enhanced the killing of Pseudomonas aeruginosa by ciprofloxacin and tobramycin under anaerobic, but not aerobic, growth conditions. Arginine or nitrate also enhanced the killing by these antibiotics in mature biofilms, reducing viable cell counts by a factor of 10 to 100 beyond that achieved by antibiotics alone.
  • Thumbnail Image
    Item
    Gene expression in pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation
    (2001-03) Bollinger, Nikki; Hassett, Daniel J.; Iglewski, Barbara H.; Costerton, J. William; McDermott, Timothy R.
    Prior studies established that the Pseudomonas aeruginosa oxidative stress response is influenced by iron availability, whereas more recent evidence demonstrated that it was also controlled by quorum sensing (QS) regulatory circuitry. In the present study, sodA (encoding manganese-cofactored superoxide dismutase [Mn-SOD]) and Mn-SOD were used as a reporter gene and endogenous reporter enzyme, respectively, to reexamine control mechanisms that govern the oxidative stress response and to better understand how QS and a nutrient stress response interact or overlap in this bacterium. In cells grown in Trypticase soy broth (TSB), Mn-SOD was found in wild-type stationary-phase planktonic cells but not in alasI or lasR mutant. However, Mn-SOD activity was completely suppressed in the wild-type strain when TSB was supplemented with iron. Reporter gene studies indicated thatsodA transcription could be variably induced in iron-starved cells of all three strains, depending on growth stage. Iron starvation induction of sodA was greatest in the wild-type strain and least in the lasR mutant and was maximal in stationary-phase cells. Reporter experiments in the wild-type strain showed increasedlasI::lacZ transcription in response to iron limitation, whereas the expression level in the lasmutants was minimal and iron starvation induction oflasI::lacZ did not occur. Studies comparing Mn-SOD activity in P. aeruginosa biofilms and planktonic cultures were also initiated. In wild-type biofilms, Mn-SOD was not detected until after 6 days, although in iron-limited wild-type biofilms Mn-SOD was detected within the initial 24 h of biofilm establishment and formation. Unlike planktonic bacteria, Mn-SOD was constitutive in the lasI and lasR mutant biofilms but could be suppressed if the growth medium was amended with 25 μM ferric chloride. This study demonstrated that (i) the nutritional status of the cell must be taken into account when one is evaluating QS-based gene expression; (ii) in the biofilm mode of growth, QS may also have negative regulatory functions; (iii) QS-based gene regulation models based on studies with planktonic cells must be modified in order to explain biofilm gene expression behavior; and (iv) gene expression in biofilms is dynamic.
  • Thumbnail Image
    Item
    Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation
    (2017-03) Akiyama, Tatsuya; Williamson, Kerry S.; Schaefer, Robert; Pratt, Shawna; Chang, Connie B.; Franklin, Michael J.
    Pseudomonas aeruginosa biofilm infections are difficult to treat with antibiotic therapy in part because the biofilms contain subpopulations of dormant antibiotic-tolerant cells. The dormant cells can repopulate the biofilms following alleviation of antibiotic treatments. While dormant, the bacteria must maintain cellular integrity, including ribosome abundance, to reinitiate the de novo protein synthesis required for resuscitation. Here, we demonstrate that the P. aeruginosa gene PA4463 [hibernation promoting factor (HPF)], but not the ribosome modulation factor (PA3049), is required for ribosomal NA preservation during prolonged nutrient starvation conditions. Single-cell–level studies using fluorescence in situ hybridization (FISH) and growth in microfluidic drops demonstrate that, in the absence of hpf, the rRNA abundances of starved cells decrease to levels that cause them to lose their ability to resuscitate from starvation, leaving intact nondividing cells. P. aeruginosa defective in the stringent response also had reduced ability to resuscitate from dormancy. However, FISH analysis of the starved stringent response mutant showed a bimodal response where the individual cells contained either abundant or low ribosome content, compared with the wild-type strain. The results indicate that ribosome maintenance is key for maintaining the ability of P. aeruginosa to resuscitate from starvation-induced dormancy and that HPF is the major factor associated with P. aeruginosa ribosome preservation.
  • Thumbnail Image
    Item
    Physical and biochemical changes in sludge upon Tubifex tubifex predation
    (2016-09) de Valk, Steef; Khadem, Ahmad F.; Foreman, Christine M.; Lier, Jules B.; de Kreuk, Merle K.
    Worm predation (WP) on activated sludge leads to increased sludge degradation rates, irrespective of the type of worm used or reactor conditions employed. However, the cause of the increased sludge degradation rates remains unknown. This paper presents a comparative analysis of the physical and biochemical aspects of predated sludge, providing insight into the hydrolytic mechanisms underlying WP. To this end, the sessile worm Tubifex tubifex was used as a model oligochaete and was batch cultivated in an 18-L airlift reactor. Predation on activated sludge showed an average reduction rate of 12 ± 3.8%/d versus 2 ± 1.3%/d for endogenous respirated sludge. Sludge predation resulted in an increased release of inorganic nitrogen, phosphate and soluble chemical oxygen demand (sCOD). The sCOD consisted mainly of polysaccharides; however, fluorescence excitation emission matrix spectroscopy analysis also revealed the presence of Tryptophan-protein-like substances. Results suggest that the released polysaccharides contain a protein-like element. Additionally, soluble iron increased slightly in concentration after WP. The extent of hydrolysis seemed to reach an average plateau of about 40% volatile solids (VS) reduction after 4 days, which is substantially higher than the 29% VS reduction for endogenous decay of activated sludge after 30 days. Furthermore, T. tubifex predominantly consumed the protein fraction of the extracellular polymeric substances. Results suggest that that the worms specifically target a fraction of the sludge that is predominantly biodegradable under aerobic conditions, albeit at significantly higher degradation rates when compared to the endogenous decay of waste activated sludge.
  • Thumbnail Image
    Item
    A biofilm growth protocol and the design of a magnetic field exposure setup to be used in the study of magnetic fields as a means of controlling bacterial biofilms
    (2009-07) McLeod, Bruce R.; Sandvik, Elizabeth L.
    The use of prosthetic implants is increasing both in the United States and around the world and there is a concomitant rise in cases of biofilm-based, persistent infections that are quite serious and virtually impervious to antibiotic treatment. The development of alternate therapies that do not involve long term use of high levels of antibiotics or surgical intervention is needed. Based on the success of using electric or magnetic fields to alter certain physiological processes, it is hypothesized that relatively low level magnetic fields, in conjunction with the appropriate antibiotic, may be able to help control and eventually clear bacterial biofilms on a prosthetic. In order to test this hypothesis, it is necessary to first develop a means of growing laboratory grade biofilms on specific materials in a way that is repeatable between experiments and that can be reproduced by other laboratories. Secondly, a means of applying controlled magnetic fields to the surfaces supporting the biofilms at a defined temperature must be developed. This article addresses both of these points.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.