Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Critical analysis of methods to determine growth, control and analysis of biofilms for potential non-submerged antibiofilm surfaces and coatings
    (Elsevier BV, 2024-06) Redfern, J.; Cunliffe, A.J.; Goeres, D.M.; Azevedo, N.F.; Verran, J.
    The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
  • Thumbnail Image
    Item
    Critical analysis of methods to determine growth, control and analysis of biofilms for potential non-submerged antibiofilm surfaces and coatings
    (Elsevier BV, 2024-06) Redfern, J.; Cunliffe, A. J.; Goeres, D. M.; Azevedo, N. F.; Verran, J.
    The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.