College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Interlaboratory study for the evaluation of three microtiter plate-based biofilm quantification methods
    (2021-07) Allkja, Jontana; van Charante, Frits; Aizawa, Juliana; Reigada, Ines; Guarch-Perez, Clara; Vazquez-Rodriguez, Jesus Augusto; Cos, Paul; Coenye, Tom; Fallarero, Adyary; Zaat, Sebastian A. J.; Felici, Antonio; Ferrari, Livia; Azevado, Nuno F.; Parker, Albert E.; Goeres, Darla M.
    Microtiter plate methods are commonly used for biofilm assessment. However, results obtained with these methods have often been difficult to reproduce. Hence, it is important to obtain a better understanding of the repeatability and reproducibility of these methods. An interlaboratory study was performed in five different laboratories to evaluate the reproducibility and responsiveness of three methods to quantify Staphylococcus aureus biofilm formation in 96-well microtiter plates: crystal violet, resazurin, and plate counts. An inter-lab protocol was developed for the study. The protocol was separated into three steps: biofilm growth, biofilm challenge, biofilm assessment. For control experiments participants performed the growth and assessment steps only. For treatment experiments, all three steps were performed and the efficacy of sodium hypochlorite (NaOCl) in killing S. aureus biofilms was evaluated. In control experiments, on the log10-scale, the reproducibility SD (SR) was 0.44 for crystal violet, 0.53 for resazurin, and 0.92 for the plate counts. In the treatment experiments, plate counts had the best responsiveness to different levels of efficacy and also the best reproducibility with respect to responsiveness (Slope/SR = 1.02), making it the more reliable method to use in an antimicrobial efficacy test. This study showed that the microtiter plate is a versatile and easy-to-use biofilm reactor, which exhibits good repeatability and reproducibility for different types of assessment methods, as long as a suitable experimental design and statistical analysis is applied.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.