College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Exploring Apex Predator Effects on Wildlife-Vehicle Collisions: A Case Study on Wolf Reintroductions in Yellowstone
    (Western Transportation Institute, 2024-09) Bell, Matthew; Huijser, Marcel P.; Kack, David
    This study investigates the impact of wolf reintroduction on wildlife-vehicle collisions (WVCs) along a segment of US-191 bordering Yellowstone National Park. Wolves were reintroduced in 1995–1996, and subsequent wolf pack establishment may have influenced the behavior and population dynamics of prey species, potentially altering WVC patterns. Using carcass data collected from 1989 to 2021, the analysis was divided into two primary phases: before wolves (1989–1996) and after wolves (1997–2021). A series of linear mixed-effects models were developed to assess changes in WVCs across these time periods. Predictor variables included average annual daily traffic (AADT), elk population estimates, and wolf counts. Results showed that WVCs significantly declined in the post-wolf period, suggesting that the presence of wolves may reduce WVCs directly by modifying prey behavior and movement patterns, or indirectly by reducing prey population densities. Further analysis revealed that while elk populations were a significant predictor of WVCs before wolves were reintroduced, this relationship weakened post-reintroduction. Traffic volume did not significantly influence WVC patterns in either period, nor did it interact significantly with wolf presence. The inclusion of wolf counts as a continuous variable showed a negative relationship with WVCs, indicating that higher wolf densities may contribute to a further reduction in collisions over time. These findings suggest that apex predators can play a role in mitigating human-wildlife conflicts, such as WVCs, by influencing prey species’ behavior and distribution. The study provides valuable insights for wildlife managers and transportation planners, highlighting the potential benefits of predator conservation for road safety and ecosystem health.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.