College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
98 results
Search Results
Item Algal amendment enhances biogenic methane production from coals of different thermal maturity(Frontiers Media SA, 2023-03) Platt, George A.; Davis, Katherine J.; Schweitzer, Hannah D.; Smith, Heidi J.; Fields, Matthew W.; Barnhart, Elliott P.; Gerlach, RobinThe addition of small amounts of algal biomass to stimulate methane production in coal seams is a promising low carbon renewable coalbed methane enhancement technique. However, little is known about how the addition of algal biomass amendment affects methane production from coals of different thermal maturity. Here, we show that biogenic methane can be produced from five coals ranging in rank from lignite to low-volatile bituminous using a coal-derived microbial consortium in batch microcosms with and without algal amendment. The addition of 0.1 g/l algal biomass resulted in maximum methane production rates up to 37 days earlier and decreased the time required to reach maximum methane production by 17–19 days when compared to unamended, analogous microcosms. Cumulative methane production and methane production rate were generally highest in low rank, subbituminous coals, but no clear association between increasing vitrinite reflectance and decreasing methane production could be determined. Microbial community analysis revealed that archaeal populations were correlated with methane production rate (p = 0.01), vitrinite reflectance (p = 0.03), percent volatile matter (p = 0.03), and fixed carbon (p = 0.02), all of which are related to coal rank and composition. Sequences indicative of the acetoclastic methanogenic genus Methanosaeta dominated low rank coal microcosms. Amended treatments that had increased methane production relative to unamended analogs had high relative abundances of the hydrogenotrophic methanogenic genus Methanobacterium and the bacterial family Pseudomonadaceae. These results suggest that algal amendment may shift coal-derived microbial communities towards coal-degrading bacteria and CO2-reducing methanogens. These results have broad implications for understanding subsurface carbon cycling in coal beds and the adoption of low carbon renewable microbially enhanced coalbed methane techniques across a diverse range of coal geology.Item Potential use of fungal-bacterial co-cultures for the removal of organic pollutants(Informa UK Limited, 2021-07) Espinosa-Ortiz, Erika J.; Rene, Eldon R.; Gerlach, RobinFungi and bacteria coexist in a wide variety of natural and artificial environments which can lead to their association and interaction – ranging from antagonism to cooperation – that can affect the survival, colonization, spatial distribution and stress resistance of the interacting partners. The use of polymicrobial cultivation approaches has facilitated a more thorough understanding of microbial dynamics in mixed microbial communities, such as those composed of fungi and bacteria, and their influence on ecosystem functions. Mixed (multi-domain) microbial communities exhibit unique associations and interactions that could result in more efficient systems for the degradation and removal of organic pollutants. Several previous studies have reported enhanced biodegradation of certain pollutants when using combined fungal-bacterial treatments compared to pure cultures or communities of either fungi or bacteria (single domain systems). This article reviews: (i) the mechanisms of pollutant degradation that can occur in fungal-bacterial systems (e.g.: co-degradation, production of secondary metabolites, enhancement of degradative enzyme production, and transport of bacteria by fungal mycelia); (ii) case studies using fungal-bacterial co-cultures for the removal of various organic pollutants (synthetic dyes, polycyclic aromatic hydrocarbons, pesticides, and other trace or volatile organic compounds) in different environmental matrices (e.g. water, gas/vapors, soil); (iii) the key aspects of engineering artificial fungal-bacterial co-cultures, and (iv) the current challenges and future perspectives of using fungal-bacterial co-cultures for environmental remediation.Item Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics(Springer Science and Business Media LLC, 2022-02) Schweitzer, Hannah D.; Smith, Heidi J.; Barnhart, Elliott P.; McKay, Luke J.; Gerlach, Robin; Cunningham, Alfred B.; Malmstrom, Rex R.; Goudeau, Danielle; Fields, Matthew W.Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study—subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes—offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.Item In Situ Enhancement and Isotopic Labeling of Biogenic Coalbed Methane(American Chemical Society, 2022-02) Barnhart, Elliott P.; Ruppert, Leslie; Hiebert, Randy; Smith, Heidi J.; Schweitzer, Hannah D.; Clark, Arthur C.; Weeks, Edwin P.; Orem, William H.; Varonka, Matthew S.; Platt, George; Shelton, Jenna L.; Davis, Katherine J.; Hyatt, Robert J.; McIntosh, Jennifer C.; Ashley, Kilian; Ono, Shuhei; Martini, Anna M.; Hackley, Keith C.; Gerlach, Robin; Spangler, Lee; Phillips, Adrienne J.; Barry, Mark; Cunningham, Alfred B.; Fields, Matthew W.Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.Item Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration(Elsevier BV, 2020-02) Kirkland, Catherine M.; Thane, Abby; Hiebert, Randy; Hyatt, Robert; Kirksey, Jim; Cunningham, Alfred B.; Gerlach, Robin; Spangler, Lee; Philips, Adrienne J.Microbially-induced calcium carbonate precipitation (MICP) is an emerging biotechnology for wellbore integrity applications including sealing defects in wellbore cement and modifying the permeability of rock formations. The goal of this field demonstration was to characterize a failed waterflood injection well and provide proof of principle that MICP can reduce permeability in the presence of oil using conventional oilfield fluid delivery methods. We compared well logs performed at the time the well was drilled with ultrasonic logs, sonic cement evaluation, and temperature logs conducted after the well failed. Analysis of these logs suggested that, rather than entering the target waterflood formation, injectate was traveling through defects in the well cement to a higher permeability sandstone layer above the target formation. Sporosarcina pasteurii cultures and urea-calcium media were delivered 2290 ft (698 m) below ground surface using a 3.75 gal (14.2 L) slickline dump bailer to promote mineralization in the undesired flow paths. By Day 6 and after 25 inoculum and 49 calcium media injections, the injectivity [gpm/psi] had decreased by approximately 70%. This demonstration shows that 1) common well logs can be used to identify scenarios where MICP can be employed to reduce system permeability, remediate leakage pathways, and improve waterflood efficiency, and 2) MICP can occur in the presence of hydrocarbons.Item A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation(MDPI, 2020-06) Hommel, Johannes; Akyel, Arda; Frieling, Zachary; Phillips, Adrienne J.; Gerlach, Robin; Cunningham, Alfred B.; Class, HolgerEnzymatically induced calcium carbonate precipitation (EICP) is an emerging engineered mineralization method similar to others such as microbially induced calcium carbonate precipitation (MICP). EICP is advantageous compared to MICP as the enzyme is still active at conditions where microbes, e.g., Sporosarcina pasteurii, commonly used for MICP, cannot grow. Especially, EICP expands the applicability of ureolysis-induced calcium carbonate mineral precipitation to higher temperatures, enabling its use in leakage mitigation deeper in the subsurface than previously thought to be possible with MICP. A new conceptual and numerical model for EICP is presented. The model was calibrated and validated using quasi-1D column experiments designed to provide the necessary data for model calibration and can now be used to assess the potential of EICP applications for leakage mitigation and other subsurface modifications.Item Potential biofilm control strategies for extended spaceflight missions(Elsevier BV, 2020-12) Zea, Luis; McLean, Robert J. C.; Rook, Tony A.; Angle, Geoffrey; Carter, D. Layne; Delegard, Angela; Denvir, Adrian; Gerlach, Robin; Gorti, Sridhar; McIlwaine, Doug; Nur, Mononita; Peyton, Brent M.; Stewart, Philip S.; Sturman, Paul; Justiniano, Yo Ann VelezBiofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and addressed in spacecraft in low Earth orbit, including ISS and the Russian Mir Space Station. However, planned future missions beyond low Earth orbit to the Moon and Mars present additional challenges, as resupplying spare parts or support materials would be impractical and the mission timeline would be in the order of years in the case of a mission to Mars. In addition, future missions are expected to include a period of dormancy in which the WRS would be unused for an extended duration. The concepts developed in this review arose from a workshop including NASA personnel and representatives with biofilm expertise from a wide range of industrial and academic backgrounds. Here, we address current strategies that are employed on Earth for biofilm control, including antifouling coatings and biocides and mechanisms for mitigating biofilm growth and damage. These ideas are presented in the context of their applicability to spaceflight and identify proposed new topics of biofilm control that need to be addressed in order to facilitate future extended, crewed, spaceflight missions.Item The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment(MDPI, 2020-10) Emmert, Simon; Davis, Katherine; Gerlach, Robin; Class, HolgerMicrobially enhanced coal-bed methane could allow for a more sustainable method of harvesting methane from un-mineable coaldbeds. The model presented here is based on a previously validated batch model; however, this model system is based on upflow reactor columns compared to previous experiments and now includes flow, transport and reactions of amendment as well as intermediate products. The model implements filtration and retardation effects, biofilm decay, and attachment and detachment processes of microbial cells due to shear stress. The model provides additional insights into processes that cannot be easily observed in experiments. This study improves the understanding of complex and strongly interacting processes involved in microbially enhanced coal-bed methane production and provides a powerful tool able to model the entire process of enhancing methane production and transport during microbial stimulation.Item Temperature‐dependent inactivation and catalysis rates of plant‐based ureases for engineered biomineralization(Wiley, 2020-11) Feder, Marnie J.; Akyel, Arda; Morasko, Vincent J.; Gerlach, Robin; Phillips, Adrienne J.Engineered (bio)mineralization uses the enzyme urease to catalyze the hydrolysis of urea to promote carbonate mineral precipitation. The current study investigates the influence of temperature on ureolysis rate and degree of inactivation of plant-sourced ureases over a range of environmentally relevant temperatures. Batch experiments at 30◦C demonstrated that jack bean meal (JBM) has a 1.7 to 56 times higher activity (844 μmol urea hydrolyzed g−1 JBM min−1) than the other tested plant-sourced ureases (soybean, pigeon pea and cottonseed). Hence, ureolysis and enzyme inactivation rates were evaluated for JBM at temperatures between 20◦C and 80◦C. A combined first-order urea hydrolysis and first-order enzyme inactivation model described the inactivation of urease over the investigated range of temperatures. The temperature-dependent rate coefficients (kurea) increased with temperature and ranged from 0.0018 at 20◦C to 0.0249 L g−1 JBM min−1 at 80◦C; JBM urease became ≥50% inactivated in as little as 5.2 minutes at 80◦C and in as long as 2238 minutes at 50◦C. The combined urea hydrolysis kinetics and enzyme inactivation model provides a mathematical relationship useful for the design of biomineralization technologies and can be incorporated into reactive transport modelsItem Innovating carbon-capture biotechnologies through ecosystem-inspired solutions(Elsevier BV, 2021-01) Schweitzer, Hannah; Aalto, Nerea J.; Busch, Wolfgang; Chan, Dennis Tin Chat; Chiesa, Matteo; Elvevoll, Edel O.; Gerlach, Robin; Krause, Kristen; Mocaer, Karel; Moran, James J.; Noel, Joseph P.; Patil, Shalaka Kiran; Schwab, Yannick; Wijffels, René H.; Wulff, Angela; Øvreås, Lise; Bernstein, Hans C.Rising atmospheric carbon concentrations affect global health, the economy, and overall quality of life. We are fast approaching climate tipping points that must be addressed, not only by reducing emissions but also through new innovation and action toward carbon capture for sequestration and utilization (CCSU). In this perspective, we delineate next-generation biotechnologies for CCSU supported by engineering design principles derived from ecological processes inspired by three major biomes (plant-soil, deep biosphere, and marine). These are to interface with existing industrial infrastructure and, in some cases, tap into the carbon sink potential of nature. To develop ecosystem-inspired biotechnology, it is important to identify accessible control points of CO2 and CH4 within a given system as well as value-chain opportunities that drive innovation. In essence, we must supplement natural biogeochemical carbon sinks with new bioengineering solutions.