College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
10 results
Search Results
Item Planetary boundary layer height retrieval from a diode-laser-based high spectral resolution lidar(SPIE-Intl Soc Optical Eng, 2022-04) Colberg, Luke; Cruikshank, Owen; Repasky, Kevin S.The planetary boundary layer height (PBLH) is an essential parameter for weather forecasting and climate modeling. The primary methods for obtaining the PBLH include radiosonde measurements of atmospheric parameters and lidar measurements, which track aerosol layers in the lower atmosphere. Radiosondes provide the parameters to determine the PBLH but cannot monitor changes over a diurnal cycle. Lidar instruments can track the temporal variability of the PBLH and account for spatial variability when operated in a network configuration. The networkable micropulse DIAL (MPD) instruments for thermodynamic profiling are based on diode-laser technology that is eye-safe and cost-effective and has demonstrated long-term autonomous operation. We present a retrieval algorithm for determining the PBLH from the quantitative aerosol profiling capability of the high spectral resolution channel of the MPD. The PBLH is determined using a Haar wavelet transform (HWT) method that tracks aerosol layers in the lower atmosphere. The PBLH from the lidar is compared with the PBLH determined from potential temperature profiles from radiosondes. In many cases, good agreement among the PBLH retrievals was seen. However, the radiosonde retrieval often missed the lowest inversion layer when several layers were present, while the HWT could track the lowest layer.Item MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling(Copernicus GmbH, 2021-06) Spuler, Scott M.; Hayman, Matthew; Stillwell, Robert A.; Carnes, Joshua; Bernatsky, Todd; Repasky, Kevin S.Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. Ground-based, national-scale profiling networks are part of a suite of instruments to provide such observations; however, the technological method must be cost-effective and quantitative. We have been developing an active remote sensing technology based on a diode-laser-based lidar technology to address this observational need. Narrowband, high-spectral-fidelity diode lasers enable accurate and calibration-free measurements requiring a minimal set of assumptions based on direct absorption (Beer–Lambert law) and a ratio of two signals. These well-proven quantitative methods are known as differential absorption lidar (DIAL) and high-spectral-resolution lidar (HSRL). This diode-laser-based architecture, characterized by less powerful laser transmitters than those historically used for atmospheric studies, can be made eye-safe and robust. Nevertheless, it also requires solar background suppression techniques such as narrow-field-of-view receivers with an ultra-narrow bandpass to observe individual photons backscattered from the atmosphere. We discuss this diode-laser-based lidar architecture's latest generation and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations. The work presented focuses on general architecture changes that pertain to both the water vapor and the temperature profiling capabilities of the MicroPulse DIAL (MPD). However, the specific subcomponent testing and instrument validation presented are for the water vapor measurements only. A fiber-coupled seed laser transmitter optimization is performed and shown to meet all of the requirements for the DIAL technique. Further improvements – such as a fiber-coupled near-range receiver, the ability to perform quality control via automatic receiver scanning, advanced multi-channel scalar capabilities, and advanced processing techniques – are discussed. These new developments increase narrowband DIAL technology readiness and are shown to allow higher-quality water vapor measurements closer to the surface via preliminary intercomparisons within the MPD network itself and with radiosondes.Item Water Vapor Profiling using a Widely Tunable, Amplified Diode Laser Based Differential Absorption Lidar (DIAL)(2009-04) Nehrir, Amin R.; Repasky, Kevin S.; Carlsten, John L.; Obland, Michael D.; Shaw, Joseph A.A differential absorption lidar (DIAL) instrument for automated profiling of water vapor in the lower troposphere has been designed, tested, and is in routine operation at Montana State University. The laser transmitter for the DIAL instrument uses a widely tunable external cavity diode laser (ECDL) to injection seed two cascaded semiconductor optical amplifiers (SOAs) to produce a laser transmitter that accesses the 824–841-nm spectral range. The DIAL receiver utilizes a 28-cm-diameter Schmidt–Cassegrain telescope; an avalanche photodiode (APD) detector; and a narrowband optical filter to collect, discriminate, and measure the scattered light. A technique of correcting for the wavelength-dependent incident angle upon the narrowband optical filter as a function of range has been developed to allow accurate water vapor profiles to be measured down to 225 m above the surface. Data comparisons using the DIAL instrument and collocated radiosonde measurements are presented demonstrating the capabilities of the DIAL instrument.Item A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models(2010-03) Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Fessenden, Julianna E.; Rahn, Thom A.; Amonette, James E.; Barr, Jon L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie S.; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, LucienA controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.Item Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, MT(2010-03) Male, Erin J.; Pickles, William L.; Silver, Eli A.; Hoffmann, Gary D.; Lewicki, Jennifer; Apple, Martha E.; Repasky, Kevin S.; Burton, Elizabeth A.Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-year timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to near-infrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9, 2008, pure carbon dioxide gas was released through a 100-m long horizontal injection well, at a flow rate of 300 kg day−1. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a “FieldSpec Pro” spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants. Four to five days after the injection began, stress was observed in the spectral signatures of plants within 1 m of the well. After approximately 10 days, moderate to high amounts of stress were measured out to 2.5 m from the well. This spatial distribution corresponded to areas of high CO2 flux from the injection. Airborne hyperspectral imagery, acquired by Resonon, Inc. of Bozeman, MT using their hyperspectral camera, also showed the same pattern of plant stress. Spectral signatures of the plants were also compared to the CO2 concentrations in the soil, which indicated that the lower limit of soil CO2 needed to stress vegetation is between 4 and 8% by volume.Item Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar, a Water Vapor DIAL, a Solar Radiometer, and a Ground-Based Nephelometer over a 24-h Period(2011-03) Repasky, Kevin S.; Reagan, John A.; Nehrir, Amin R.; Hoffman, David S.; Thomas, Michael J.; Carlsten, John L.; Shaw, Joseph A.; Shaw, Glenn E.Coordinated observational data of atmospheric aerosols were collected over a 24-h period between 2300 mountain daylight time (MDT) on 27 August 2009 and 2300 MDT on 28 August 2009 at Bozeman, Montana (45.66°N, 111.04°W, elevation 1530 m) using a collocated two-color lidar, a diode-laser-based water vapor differential absorption lidar (DIAL), a solar radiometer, and a ground-based nephelometer. The optical properties and spatial distribution of the atmospheric aerosols were inferred from the observational data collected using the collocated instruments as part of a closure experiment under dry conditions with a relative humidity below 60%. The aerosol lidar ratio and aerosol optical depth retrieved at 532 and 1064 nm using the two-color lidar and solar radiometer agreed with one another to within their individual uncertainties while the scattering component of the aerosol extinction measured using the nephelometer matched the scattering component of the aerosol extinction retrieved using the 532-nm channel of the two-color lidar and the single-scatter albedo retrieved using the solar radiometer. Using existing aerosol models developed with Aerosol Robotic Network (AERONET) data, a thin aerosol layer observed over Bozeman was most likely identified as smoke from forest fires burning in California; Washington; British Columbia, Canada; and northwestern Montana. The intrusion of the thin aerosol layer caused a change in the atmospheric radiative forcing by a factor of 1.8 ± 0.5 due to the aerosol direct effect.Item Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere(2011-02) Nehrir, Amin R.; Repasky, Kevin S.; Carlsten, John L.A second-generation diode-laser-based master oscillator power amplifier (MOPA) configured micropulse differential absorption lidar (DIAL) instrument for profiling of lower-tropospheric water vapor is presented. The DIAL transmitter is based on a continuous wave (cw) external cavity diode laser (ECDL) master oscillator that is used to injection seed two cascaded tapered semiconductor optical power amplifiers, which deliver up to 2-μJ pulse energies over a 1-μs pulse duration at 830 nm with an average power of ∼40 mW at a pulse repetition frequency of 20 kHz. The DIAL receiver utilizes a commercial 28-cm-diameter Schmidt–Cassegrain telescope, a 250-pm narrowband optical filter, and a fiber-coupled single-photon-counting Avalanche photodiode (APD) detector, yielding a far-field full-angle field of view of 170 μrad. A detailed description of the second-generation Montana State University (MSU) DIAL instrument is presented. Water vapor number density profiles and time–height cross sections collected with the water vapor DIAL instrument are also presented and compared with collocated radiosonde measurements, demonstrating the instruments ability to measure night- and daytime water vapor profiles in the lower troposphere.Item Optical Characterization of Continental and Biomass Burning Aerosols over Bozeman Montana: A Case Study of the Aerosol Direct Effect(2011-11) Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well‐aged biomass‐burning aerosols were the dominant aerosol types of extremely fresh biomass‐burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye‐safe micropulse water vapor differential absorption lidar (DIAL) (MP‐DIAL), a single‐channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground‐based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass‐burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass‐burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass‐burning aerosols was calculated to be on average −10 W/m2 and was shown to compare favorably with regional‐scale forcing calculations using MODIS‐Terra and AERONET data in an effort to assess the accuracy of estimating the regional‐scale aerosol direct radiative forcing effect using aerosol optical properties measured from a single rural site such as Bozeman, Montana.Item Micropulse Water Vapor Differential Absorption Lidar: Transmitter Design and Performance(2012-10) Nehrir, Amin R.; Repasky, Kevin S.; Carlsten, John L.An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.Item Field demonstration of a 1 x 4 Fiber Sensor Array for Sub-Surface Carbon Dioxide Monitoring for Carbon Sequestration(2014-01) Soukup, Benjamin J.; Repasky, Kevin S.; Carlsten, John L.; Wicks, Geoffrey R.A fiber sensor array for subsurface CO 2 concentration measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature-tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is directed to one of the four probes via an inline 1×4 fiber optic switch. Each of the four probes is buried and allows the subsurface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO 2 before it is directed back through the inline fiber optic switch. The DFB laser is tuned across two CO 2 absorption features, where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated, allowing subsurface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for 58 days beginning from June 19, 2012 at the Zero Emission Research Technology field site, where subsurface CO 2 concentrations were monitored. Background measurements indicate that the fiber sensor array can monitor background levels as low as 1000 parts per million (ppm). A 34-day subsurface release of 0.15 tones CO 2 /day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging over 60,000 ppm, a factor of greater than 6 higher than background measurements.